IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v28y2003i1p1-12.html
   My bibliography  Save this article

The effect of temperature on the power drop in crystalline silicon solar cells

Author

Listed:
  • Radziemska, E.

Abstract

The influence of temperature and wavelength on electrical parameters of crystalline silicon solar cell and a solar module are presented. At the experimental stand a thick copper plate protected the solar cell from overheating, the plate working as a radiation heat sink, or also as the cell temperature stabilizer during heating it up to 80°C. A decrease of the output power (−0.65%/K), of the fill-factor (−0.2%/K) and of the conversion efficiency (−0.08%/K) of the PV module with the temperature increase has been observed. The spectral characteristic of the open-circuit voltage of the single-crystalline silicon solar cell is also presented. It is shown that the radiation-rate coefficient of the short-circuit current-limit of the solar cell at 28°C is 1.2%/(mW/cm2).

Suggested Citation

  • Radziemska, E., 2003. "The effect of temperature on the power drop in crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 28(1), pages 1-12.
  • Handle: RePEc:eee:renene:v:28:y:2003:i:1:p:1-12
    DOI: 10.1016/S0960-1481(02)00015-0
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148102000150
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(02)00015-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Treble, Fred, 1998. "Milestones in the development of crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 15(1), pages 473-478.
    2. Kazmerski, Lawrence L., 1997. "Photovoltaics: A review of cell and module technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 1(1-2), pages 71-170, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malik, A.Q. & Damit, Salmi Jan Bin Haji, 2003. "Outdoor testing of single crystal silicon solar cells," Renewable Energy, Elsevier, vol. 28(9), pages 1433-1445.
    2. Staffan Jacobsson & Björn A. Andersson & Lennart Bångens, 2002. "Transforming the energy system - the evolution of the German technological system for solar cells," SPRU Working Paper Series 84, SPRU - Science Policy Research Unit, University of Sussex Business School.
    3. Hernández-Moro, J. & Martínez-Duart, J.M., 2013. "Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 119-132.
    4. M, Chandrashekara & Yadav, Avadhesh, 2017. "Water desalination system using solar heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1308-1330.
    5. Peters, Michael & Schneider, Malte & Griesshaber, Tobias & Hoffmann, Volker H., 2012. "The impact of technology-push and demand-pull policies on technical change – Does the locus of policies matter?," Research Policy, Elsevier, vol. 41(8), pages 1296-1308.
    6. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Lin, Q.G. & Tan, Q., 2009. "Community-scale renewable energy systems planning under uncertainty--An interval chance-constrained programming approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 721-735, May.
    7. Li, Danny H.W. & Cheung, Gary H.W., 2005. "Study of models for predicting the diffuse irradiance on inclined surfaces," Applied Energy, Elsevier, vol. 81(2), pages 170-186, June.
    8. Florides, G. A. & Tassou, S. A. & Kalogirou, S. A. & Wrobel, L. C., 2002. "Review of solar and low energy cooling technologies for buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(6), pages 557-572, December.
    9. Chaurey, Akanksha & Kandpal, Tara Chandra, 2010. "Assessment and evaluation of PV based decentralized rural electrification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2266-2278, October.
    10. Cai, Y.P. & Huang, G.H. & Tan, Q. & Yang, Z.F., 2009. "Planning of community-scale renewable energy management systems in a mixed stochastic and fuzzy environment," Renewable Energy, Elsevier, vol. 34(7), pages 1833-1847.
    11. Zhai, X.Q. & Wang, R.Z., 2009. "A review for absorbtion and adsorbtion solar cooling systems in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1523-1531, August.
    12. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    13. Ekren, Orhan & Ekren, Banu Y., 2010. "Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing," Applied Energy, Elsevier, vol. 87(2), pages 592-598, February.
    14. Si Kuan Thio & Sung-Yong Park, 2019. "Dispersive Optical Systems for Highly-Concentrated Solar Spectrum Splitting: Concept, Design, and Performance Analyses," Energies, MDPI, vol. 12(24), pages 1-18, December.
    15. Shalini, S. & Balasundara prabhu, R. & Prasanna, S. & Mallick, Tapas K. & Senthilarasu, S., 2015. "Review on natural dye sensitized solar cells: Operation, materials and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1306-1325.
    16. Al-Ismaily, Hilal A. & Probert, Douglas, 1998. "Photovoltaic electricity prospects in oman," Applied Energy, Elsevier, vol. 59(2-3), pages 97-124, February.
    17. Hoppmann, Joern & Volland, Jonas & Schmidt, Tobias S. & Hoffmann, Volker H., 2014. "The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1101-1118.
    18. Wamukonya, Njeri, 2007. "Solar home system electrification as a viable technology option for Africa's development," Energy Policy, Elsevier, vol. 35(1), pages 6-14, January.
    19. Afgan, Naim H. & Carvalho, Maria G., 2002. "Multi-criteria assessment of new and renewable energy power plants," Energy, Elsevier, vol. 27(8), pages 739-755.
    20. Pillot, Benjamin & Muselli, Marc & Poggi, Philippe & Dias, João Batista, 2019. "Historical trends in global energy policy and renewable power system issues in Sub-Saharan Africa: The case of solar PV," Energy Policy, Elsevier, vol. 127(C), pages 113-124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:28:y:2003:i:1:p:1-12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.