IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i5p904-912.html
   My bibliography  Save this article

The vulnerability of wind power to climate change in Brazil

Author

Listed:
  • Pereira de Lucena, André Frossard
  • Szklo, Alexandre Salem
  • Schaeffer, Roberto
  • Dutra, Ricardo Marques

Abstract

The availability and reliability of wind power depend a great deal on current and future climate conditions, which may vary in light of possible global climate change (GCC). Long-term energy planning, however, does not normally take possible future GCC into consideration, which may turn out to be a risky exercise. In the case of Brazil, the untapped wind power potential is known to be impressive, provided that climate conditions remain the same over time. The focus of this study is to analyze some possible impacts of GCC on the wind power potential of Brazil, by simulating wind conditions associated with the IPCC A2 and B2 Scenarios. Results based on the HadCM3 general circulation model and the analysis of the country's wind database indicate that the wind power potential in Brazil would not be jeopardized in the future due to possible new climate conditions. On the contrary, improved wind conditions are expected, particularly in the Northeast coast of the country. Therefore, investments in wind power generation can be an interesting way to expand renewable energy production in Brazil. However, given the large uncertainties associated with GCC models and scenarios, the findings of this paper should be viewed as a possibility rather than as a projection.

Suggested Citation

  • Pereira de Lucena, André Frossard & Szklo, Alexandre Salem & Schaeffer, Roberto & Dutra, Ricardo Marques, 2010. "The vulnerability of wind power to climate change in Brazil," Renewable Energy, Elsevier, vol. 35(5), pages 904-912.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:5:p:904-912
    DOI: 10.1016/j.renene.2009.10.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109004480
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.10.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sailor, David J. & Smith, Michael & Hart, Melissa, 2008. "Climate change implications for wind power resources in the Northwest United States," Renewable Energy, Elsevier, vol. 33(11), pages 2393-2406.
    2. Pryor, S.C. & Barthelmie, R.J., 2010. "Climate change impacts on wind energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 430-437, January.
    3. Harrison, Gareth P. & Wallace, A. Robin, 2005. "Climate sensitivity of marine energy," Renewable Energy, Elsevier, vol. 30(12), pages 1801-1817.
    4. Dutra, Ricardo & Szklo, Alexandre, 2008. "Assessing long-term incentive programs for implementing wind power in Brazil using GIS rule-based methods," Renewable Energy, Elsevier, vol. 33(12), pages 2507-2515.
    5. de Lucena, André Frossard Pereira & Szklo, Alexandre Salem & Schaeffer, Roberto & de Souza, Raquel Rodrigues & Borba, Bruno Soares Moreira Cesar & da Costa, Isabella Vaz Leal & Júnior, Amaro Olimpio P, 2009. "The vulnerability of renewable energy to climate change in Brazil," Energy Policy, Elsevier, vol. 37(3), pages 879-889, March.
    6. de Carvalho, Joaquim F. & Sauer, Ildo L., 2009. "Does Brazil need new nuclear power plants?," Energy Policy, Elsevier, vol. 37(4), pages 1580-1584, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.
    2. Jane Ebinger & Walter Vergara, 2011. "Climate Impacts on Energy Systems : Key Issues for Energy Sector Adaptation," World Bank Publications - Books, The World Bank Group, number 2271, December.
    3. Wang, Bing & Ke, Ruo-Yu & Yuan, Xiao-Chen & Wei, Yi-Ming, 2014. "China׳s regional assessment of renewable energy vulnerability to climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 185-195.
    4. Wang, Bing & Liang, Xiao-Jie & Zhang, Hao & Wang, Lu & Wei, Yi-Ming, 2014. "Vulnerability of hydropower generation to climate change in China: Results based on Grey forecasting model," Energy Policy, Elsevier, vol. 65(C), pages 701-707.
    5. Jing-Li Fan & Bao-Jun Tang & Hao Yu & Yun-Bing Hou & Yi-Ming Wei, 2015. "Impact of climatic factors on monthly electricity consumption of China’s sectors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 2027-2037, January.
    6. Früh, Wolf-Gerrit, 2013. "Long-term wind resource and uncertainty estimation using wind records from Scotland as example," Renewable Energy, Elsevier, vol. 50(C), pages 1014-1026.
    7. Wachsmuth, J. & Blohm, A. & Gößling-Reisemann, S. & Eickemeier, T. & Ruth, M. & Gasper, R. & Stührmann, S., 2013. "How will renewable power generation be affected by climate change? The case of a Metropolitan Region in Northwest Germany," Energy, Elsevier, vol. 58(C), pages 192-201.
    8. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    9. Cradden, Lucy C. & Harrison, Gareth P., 2013. "Adapting overhead lines to climate change: Are dynamic ratings the answer?," Energy Policy, Elsevier, vol. 63(C), pages 197-206.
    10. Simon Watson, 2014. "Quantifying the variability of wind energy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 330-342, July.
    11. Lucy Cradden & Gareth Harrison & John Chick, 2012. "Will climate change impact on wind power development in the UK?," Climatic Change, Springer, vol. 115(3), pages 837-852, December.
    12. Gonçalves-Ageitos, María & Barrera-Escoda, Antoni & Baldasano, Jose M. & Cunillera, Jordi, 2015. "Modelling wind resources in climate change scenarios in complex terrains," Renewable Energy, Elsevier, vol. 76(C), pages 670-678.
    13. Soares M.C. Borba, Bruno & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil," Energy, Elsevier, vol. 37(1), pages 469-481.
    14. Alonzo, Bastien & Ringkjob, Hans-Kristian & Jourdier, Benedicte & Drobinski, Philippe & Plougonven, Riwal & Tankov, Peter, 2017. "Modelling the variability of the wind energy resource on monthly and seasonal timescales," Renewable Energy, Elsevier, vol. 113(C), pages 1434-1446.
    15. Lucena, André F.P. & Clarke, Leon & Schaeffer, Roberto & Szklo, Alexandre & Rochedo, Pedro R.R. & Nogueira, Larissa P.P. & Daenzer, Kathryn & Gurgel, Angelo & Kitous, Alban & Kober, Tom, 2016. "Climate policy scenarios in Brazil: A multi-model comparison for energy," Energy Economics, Elsevier, vol. 56(C), pages 564-574.
    16. Katopodis, Theodoros & Markantonis, Iason & Vlachogiannis, Diamando & Politi, Nadia & Sfetsos, Athanasios, 2021. "Assessing climate change impacts on wind characteristics in Greece through high resolution regional climate modelling," Renewable Energy, Elsevier, vol. 179(C), pages 427-444.
    17. Huang, Junling & McElroy, Michael B., 2015. "A 32-year perspective on the origin of wind energy in a warming climate," Renewable Energy, Elsevier, vol. 77(C), pages 482-492.
    18. Carta, José A. & Velázquez, Sergio & Cabrera, Pedro, 2013. "A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 362-400.
    19. Wang, Meina & Ullrich, Paul & Millstein, Dev, 2018. "The future of wind energy in California: Future projections with the Variable-Resolution CESM," Renewable Energy, Elsevier, vol. 127(C), pages 242-257.
    20. Santos, J.A. & Rochinha, C. & Liberato, M.L.R. & Reyers, M. & Pinto, J.G., 2015. "Projected changes in wind energy potentials over Iberia," Renewable Energy, Elsevier, vol. 75(C), pages 68-80.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:5:p:904-912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.