IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i11p2393-2406.html
   My bibliography  Save this article

Climate change implications for wind power resources in the Northwest United States

Author

Listed:
  • Sailor, David J.
  • Smith, Michael
  • Hart, Melissa

Abstract

Using statistically downscaled output from four general circulation models (GCMs), we have investigated scenarios of climate change impacts on wind power generation potential in a five-state region within the Northwest United States (Idaho, Montana, Oregon, Washington, and Wyoming). All GCM simulations were extracted from the standardized set of runs created for the Intergovernmental Panel on Climate Change (IPCC). Analysis of model runs for the 20th century (20c3m) simulations revealed that the direct output of wind statistics from these models is of relatively poor quality compared with observations at airport weather stations within each state. When the GCM output was statistically downscaled, the resulting estimates of current climate wind statistics are substantially better. Furthermore, in looking at the GCM wind statistics for two IPCC future climate scenarios from the Special Report on Emissions Scenarios (SRES A1B and A2), there was significant disagreement in the direct model output from the four GCMs. When statistical downscaling was applied to the future climate simulations, a more coherent story unfolded related to the likely impact of climate change on the region's wind power resource. Specifically, the results suggest that summertime wind speeds in the Northwest may decrease by 5–10%, while wintertime wind speeds may decrease by relatively little, or possibly increase slightly. When these wind statistics are projected to typical turbine hub heights and nominal wind turbine power curves are applied, the impact of the climate change scenarios on wind power may be as high as a 40% reduction in summertime generation potential.

Suggested Citation

  • Sailor, David J. & Smith, Michael & Hart, Melissa, 2008. "Climate change implications for wind power resources in the Northwest United States," Renewable Energy, Elsevier, vol. 33(11), pages 2393-2406.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:11:p:2393-2406
    DOI: 10.1016/j.renene.2008.01.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108000141
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.01.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Breslow, Paul B. & Sailor, David J., 2002. "Vulnerability of wind power resources to climate change in the continental United States," Renewable Energy, Elsevier, vol. 27(4), pages 585-598.
    2. Segal, Moti & Pan, Zaitao & Arritt, Raymond W & Takle, Eugene S, 2001. "On the potential change in wind power over the US due to increases of atmospheric greenhouse gases," Renewable Energy, Elsevier, vol. 24(2), pages 235-243.
    3. Harrison, Gareth P. & Wallace, A. Robin, 2005. "Climate sensitivity of marine energy," Renewable Energy, Elsevier, vol. 30(12), pages 1801-1817.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schaeffer, Roberto & Szklo, Alexandre Salem & Pereira de Lucena, André Frossard & Moreira Cesar Borba, Bruno Soares & Pupo Nogueira, Larissa Pinheiro & Fleming, Fernanda Pereira & Troccoli, Alberto & , 2012. "Energy sector vulnerability to climate change: A review," Energy, Elsevier, vol. 38(1), pages 1-12.
    2. Jane Ebinger & Walter Vergara, 2011. "Climate Impacts on Energy Systems : Key Issues for Energy Sector Adaptation," World Bank Publications - Books, The World Bank Group, number 2271, December.
    3. Harrison, Gareth P. & Wallace, A. Robin, 2005. "Climate sensitivity of marine energy," Renewable Energy, Elsevier, vol. 30(12), pages 1801-1817.
    4. Wang, Bing & Liang, Xiao-Jie & Zhang, Hao & Wang, Lu & Wei, Yi-Ming, 2014. "Vulnerability of hydropower generation to climate change in China: Results based on Grey forecasting model," Energy Policy, Elsevier, vol. 65(C), pages 701-707.
    5. Lucy Cradden & Gareth Harrison & John Chick, 2012. "Will climate change impact on wind power development in the UK?," Climatic Change, Springer, vol. 115(3), pages 837-852, December.
    6. Wimhurst, Joshua J. & Greene, J. Scott, 2019. "Oklahoma's future wind energy resources and their relationship with the Central Plains low-level jet," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    7. Yau, Y.H. & Pean, H.L., 2011. "The climate change impact on air conditioner system and reliability in Malaysia—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4939-4949.
    8. Wilberforce, Tabbi & El Hassan, Zaki & Durrant, A. & Thompson, J. & Soudan, Bassel & Olabi, A.G., 2019. "Overview of ocean power technology," Energy, Elsevier, vol. 175(C), pages 165-181.
    9. Pan, Zaitao & Segal, Moti & Arritt, Raymond W & Takle, Eugene S, 2004. "On the potential change in solar radiation over the US due to increases of atmospheric greenhouse gases," Renewable Energy, Elsevier, vol. 29(11), pages 1923-1928.
    10. Akintayo T. Abolude & Wen Zhou & Akintomide Afolayan Akinsanola, 2020. "Evaluation and Projections of Wind Power Resources over China for the Energy Industry Using CMIP5 Models," Energies, MDPI, vol. 13(10), pages 1-16, May.
    11. Wang, Bing & Ke, Ruo-Yu & Yuan, Xiao-Chen & Wei, Yi-Ming, 2014. "China׳s regional assessment of renewable energy vulnerability to climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 185-195.
    12. Iglesias, G. & Carballo, R., 2011. "Wave resource in El Hierro—an island towards energy self-sufficiency," Renewable Energy, Elsevier, vol. 36(2), pages 689-698.
    13. Aissatou Ndiaye & Mounkaila Saley Moussa & Cheikh Dione & Windmanagda Sawadogo & Jan Bliefernicht & Laouali Dungall & Harald Kunstmann, 2022. "Projected Changes in Solar PV and Wind Energy Potential over West Africa: An Analysis of CORDEX-CORE Simulations," Energies, MDPI, vol. 15(24), pages 1-22, December.
    14. McCubbin, Donald & Sovacool, Benjamin K., 2013. "Quantifying the health and environmental benefits of wind power to natural gas," Energy Policy, Elsevier, vol. 53(C), pages 429-441.
    15. Johnson, Dana L. & Erhardt, Robert J., 2016. "Projected impacts of climate change on wind energy density in the United States," Renewable Energy, Elsevier, vol. 85(C), pages 66-73.
    16. Bergen, Matías & Muñoz, Francisco D., 2018. "Quantifying the effects of uncertain climate and environmental policies on investments and carbon emissions: A case study of Chile," Energy Economics, Elsevier, vol. 75(C), pages 261-273.
    17. Hussain, Akhtar & Arif, Syed Muhammad & Aslam, Muhammad, 2017. "Emerging renewable and sustainable energy technologies: State of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 12-28.
    18. Krivtsov, Vladimir & Linfoot, Brian, 2012. "Disruption to benthic habitats by moorings of wave energy installations: A modelling case study and implications for overall ecosystem functioning," Ecological Modelling, Elsevier, vol. 245(C), pages 121-124.
    19. Cai, Y.P. & Huang, G.H. & Tan, Q. & Liu, L., 2011. "An integrated approach for climate-change impact analysis and adaptation planning under multi-level uncertainties. Part II. Case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3051-3073, August.
    20. Carta, José A. & Velázquez, Sergio, 2011. "A new probabilistic method to estimate the long-term wind speed characteristics at a potential wind energy conversion site," Energy, Elsevier, vol. 36(5), pages 2671-2685.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:11:p:2393-2406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.