IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v47y2012icp437-446.html
   My bibliography  Save this article

Industrial electricity demand and energy efficiency policy: The role of price changes and private R&D in the Swedish pulp and paper industry

Author

Listed:
  • Henriksson, Eva
  • Söderholm, Patrik
  • Wårell, Linda

Abstract

The objective of this paper is to analyze electricity demand behaviour in the Swedish pulp and paper industry in the context of the increased interest in so-called voluntary energy efficiency programs. In these programs tax exemptions are granted if the participating firms carry out energy efficiency measures following an energy audit. We employ a panel data set of 19 pulp and paper firms, and estimate both the own- and cross-price elasticities of electricity demand as well as the impact of knowledge accumulation following private R&D on electricity use. The empirical results show that electricity use in the Swedish pulp and paper industry is relatively own-price insensitive, and the self-reported electricity savings following the voluntary so-called PFE program support the notion of important information asymmetries at the company level. However, the results display that already in a baseline setting pulp and paper firms tend to invest in private R&D that have electricity saving impacts, and our model simulations suggest that up to about one-third of the industry sector's self-reported electricity savings in PFE could be attributable to pure baseline effects. Future evaluations of voluntary energy efficiency programs must increasingly recognize the already existing incentives to reduce energy use in energy-intensive industries.

Suggested Citation

  • Henriksson, Eva & Söderholm, Patrik & Wårell, Linda, 2012. "Industrial electricity demand and energy efficiency policy: The role of price changes and private R&D in the Swedish pulp and paper industry," Energy Policy, Elsevier, vol. 47(C), pages 437-446.
  • Handle: RePEc:eee:enepol:v:47:y:2012:i:c:p:437-446
    DOI: 10.1016/j.enpol.2012.05.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512004284
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.05.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adeyemi, Olutomi I. & Hunt, Lester C., 2007. "Modelling OECD industrial energy demand: Asymmetric price responses and energy-saving technical change," Energy Economics, Elsevier, vol. 29(4), pages 693-709, July.
    2. Ilmakunnas, Pekka & Torma, Hannu, 1989. " Structural Change in Factor Substitution in Finnish Manufacturing," Scandinavian Journal of Economics, Wiley Blackwell, vol. 91(4), pages 705-721.
    3. Urga, Giovanni & Walters, Chris, 2003. "Dynamic translog and linear logit models: a factor demand analysis of interfuel substitution in US industrial energy demand," Energy Economics, Elsevier, vol. 25(1), pages 1-21, January.
    4. Anderson, Soren T. & Newell, Richard G., 2004. "Information programs for technology adoption: the case of energy-efficiency audits," Resource and Energy Economics, Elsevier, vol. 26(1), pages 27-50, March.
    5. Ernst Berndt & Ann Friedlaender & Judy Chiang & Christopher Vellturo, 1993. "Cost effects of mergers and deregulation in the U.S. Rail industry," Journal of Productivity Analysis, Springer, vol. 4(1), pages 127-144, June.
    6. Christensen, Laurits R & Jorgenson, Dale W & Lau, Lawrence J, 1973. "Transcendental Logarithmic Production Frontiers," The Review of Economics and Statistics, MIT Press, vol. 55(1), pages 28-45, February.
    7. Jevgenijs Steinbuks & Karsten Neuhoff, 2010. "Operational and Investment Response to Energy Prices in the OECD Manufacturing Sector," Working Papers EPRG 1006, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    8. Lindmark, Magnus & Bergquist, Ann-Kristin & Andersson, Lars Fredrik, 2011. "Energy transition, carbon dioxide reduction and output growth in the Swedish pulp and paper industry: 1973-2006," Energy Policy, Elsevier, vol. 39(9), pages 5449-5456, September.
    9. Joshua Linn, 2008. "Energy Prices and the Adoption of Energy-Saving Technology," Economic Journal, Royal Economic Society, vol. 118(533), pages 1986-2012, November.
    10. James M. Griffin & Craig T. Schulman, 2005. "Price Asymmetry in Energy Demand Models: A Proxy for Energy-Saving Technical Change?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 1-22.
    11. Lundmark, Robert & Söderholm, Patrik & Lundmark, Robert, 2003. "Structural changes in Swedish wastepaper demand: a variable cost function approach," Journal of Forest Economics, Elsevier, vol. 9(1), pages 41-63.
    12. Patrik Söderholm & Ger Klaassen, 2007. "Wind Power in Europe: A Simultaneous Innovation–Diffusion Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(2), pages 163-190, February.
    13. Schleich, Joachim, 2009. "Barriers to energy efficiency: A comparison across the German commercial and services sector," Ecological Economics, Elsevier, vol. 68(7), pages 2150-2159, May.
    14. Brannlund, Runar & Lundgren, Tommy, 2007. "Swedish industry and Kyoto--An assessment of the effects of the European CO2 emission trading system," Energy Policy, Elsevier, vol. 35(9), pages 4749-4762, September.
    15. Popp, David C., 2001. "The effect of new technology on energy consumption," Resource and Energy Economics, Elsevier, vol. 23(3), pages 215-239, July.
    16. Bjorner, Thomas Bue & Togeby, Mikael & Jensen, Henrik Holm, 2001. "Industrial companies' demand for electricity: evidence from a micropanel," Energy Economics, Elsevier, vol. 23(5), pages 595-617, September.
    17. Berndt, Ernst R & Wood, David O, 1975. "Technology, Prices, and the Derived Demand for Energy," The Review of Economics and Statistics, MIT Press, vol. 57(3), pages 259-268, August.
    18. Pindyck, Robert S, 1979. "Interfuel Substitution and the Industrial Demand for Energy: An International Comparison," The Review of Economics and Statistics, MIT Press, vol. 61(2), pages 169-179, May.
    19. David J. Teece & Gary Pisano & Amy Shuen, 1997. "Dynamic capabilities and strategic management," Strategic Management Journal, Wiley Blackwell, vol. 18(7), pages 509-533, August.
    20. Lefley, Frank, 1996. "The payback method of investment appraisal: A review and synthesis," International Journal of Production Economics, Elsevier, vol. 44(3), pages 207-224, July.
    21. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    22. Peter C. Reiss & Matthew W. White, 2008. "What changes energy consumption? Prices and public pressures," RAND Journal of Economics, RAND Corporation, vol. 39(3), pages 636-663, September.
    23. Hirofumi Uzawa, 1962. "Production Functions with Constant Elasticities of Substitution," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 29(4), pages 291-299.
    24. Klaassen, Ger & Miketa, Asami & Larsen, Katarina & Sundqvist, Thomas, 2005. "The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom," Ecological Economics, Elsevier, vol. 54(2-3), pages 227-240, August.
    25. Hammar, Henrik & Löfgren, Åsa, 2010. "Explaining adoption of end of pipe solutions and clean technologies--Determinants of firms' investments for reducing emissions to air in four sectors in Sweden," Energy Policy, Elsevier, vol. 38(7), pages 3644-3651, July.
    26. Lundmark, Robert & Soderholm, Patrik, 2004. "Estimating and decomposing the rate of technical change in the Swedish pulp and paper industry: A general index approach," International Journal of Production Economics, Elsevier, vol. 91(1), pages 17-35, September.
    27. Sue Wing, Ian, 2008. "Explaining the declining energy intensity of the U.S. economy," Resource and Energy Economics, Elsevier, vol. 30(1), pages 21-49, January.
    28. Ericsson, Karin & Nilsson, Lars J. & Nilsson, Måns, 2011. "New energy strategies in the Swedish pulp and paper industry--The role of national and EU climate and energy policies," Energy Policy, Elsevier, vol. 39(3), pages 1439-1449, March.
    29. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy-efficiency gap What does it mean?," Energy Policy, Elsevier, vol. 22(10), pages 804-810, October.
    30. Eva Samakovlis, 2003. "The Relationship between Waste Paper and Other Inputs in the Swedish Paper Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 25(2), pages 191-212, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Dahlqvist & Patrik S derholm, 2019. "Industrial Energy Use, Management Practices and Price Signals: The Case of Swedish Process Industry," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 30-45.
    2. Gert Bijnens & Jozef Konings & Stijn Vanormelingen, 2022. "The impact of electricity prices on European manufacturing jobs," Applied Economics, Taylor & Francis Journals, vol. 54(1), pages 38-56, January.
    3. Said, Fathin Faizah & Babatunde, Kazeem Alasinrin & Md Nor, Nor Ghani & Mahmoud, Moamin A. & Begum, Rawshan Ara, 2022. "Decarbonizing the Global Electricity Sector through Demand-Side Management: A Systematic Critical Review of Policy Responses," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 56(1), pages 71-91.
    4. Gert Bijnens & John Hutchinson & Jozef Konings & Arthur Saint Guilhem, 2021. "The interplay between green policy, electricity prices, financial constraints and jobs. Firm-level evidence," Working Paper Research 399, National Bank of Belgium.
    5. Cox, Michael & Peichl, Andreas & Pestel, Nico & Siegloch, Sebastian, 2014. "Labor demand effects of rising electricity prices: Evidence for Germany," Energy Policy, Elsevier, vol. 75(C), pages 266-277.
    6. Safarzadeh, Soroush & Rasti-Barzoki, Morteza & Hejazi, Seyed Reza, 2020. "A review of optimal energy policy instruments on industrial energy efficiency programs, rebound effects, and government policies," Energy Policy, Elsevier, vol. 139(C).
    7. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    8. Florian Jaehn & Raisa Juopperi, 2019. "A Description of Supply Chain Planning Problems in the Paper Industry with Literature Review," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(01), pages 1-39, February.
    9. Bergquist, Ann-Kristin & Keskitalo, E. Carina H., 2016. "Regulation versus deregulation. Policy divergence between Swedish forestry and the Swedish pulp and paper industry after the 1990s," Forest Policy and Economics, Elsevier, vol. 73(C), pages 10-17.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steinbuks, Jevgenijs & Neuhoff, Karsten, 2014. "Assessing energy price induced improvements in efficiency of capital in OECD manufacturing industries," Journal of Environmental Economics and Management, Elsevier, vol. 68(2), pages 340-356.
    2. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    3. Lundmark, Robert & Olsson, Anna, 2015. "Factor substitution and procurement competition for forest resources in Sweden," International Journal of Production Economics, Elsevier, vol. 169(C), pages 99-109.
    4. Anna Dahlqvist & Patrik S derholm, 2019. "Industrial Energy Use, Management Practices and Price Signals: The Case of Swedish Process Industry," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 30-45.
    5. He, Yongda & Lin, Boqiang, 2019. "Heterogeneity and asymmetric effects in energy resources allocation of the manufacturing sectors in China," Energy, Elsevier, vol. 170(C), pages 1019-1035.
    6. Koetse, Mark J. & de Groot, Henri L.F. & Florax, Raymond J.G.M., 2008. "Capital-energy substitution and shifts in factor demand: A meta-analysis," Energy Economics, Elsevier, vol. 30(5), pages 2236-2251, September.
    7. Jevgenijs Steinbuks, 2012. "Interfuel Substitution and Energy Use in the U.K. Manufacturing Sector," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    8. Wurlod, Jules-Daniel & Noailly, Joëlle, 2018. "The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries," Energy Economics, Elsevier, vol. 71(C), pages 47-61.
    9. Lundmark, Robert & Söderholm, Patrik & Lundmark, Robert, 2003. "Structural changes in Swedish wastepaper demand: a variable cost function approach," Journal of Forest Economics, Elsevier, vol. 9(1), pages 41-63.
    10. Hossein Mirshojaeian Hosseini & Shinji Kaneko, 2013. "Fuel Conservation Effect of Energy Subsidy Reform in Iran," Working Papers 3-1, Faculty of Economics,University of Tehran.Tehran,Iran.
    11. Mirshojaeian Hosseini , Hossein & Majed , Vahid & Kaneko , Shinji, 2015. "The Effects of Energy Subsidy Reform on Fuel Demand in Iran," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 10(2), pages 23-47, January.
    12. Hammar, Henrik & Löfgren, Åsa, 2010. "Explaining adoption of end of pipe solutions and clean technologies--Determinants of firms' investments for reducing emissions to air in four sectors in Sweden," Energy Policy, Elsevier, vol. 38(7), pages 3644-3651, July.
    13. Ajayi, V. & Reiner, D., 2018. "European Industrial Energy Intensity: The Role of Innovation 1995-2009," Cambridge Working Papers in Economics 1835, Faculty of Economics, University of Cambridge.
    14. Steinbuks, Jevgenijs & Narayanan, Badri G., 2015. "Fossil fuel producing economies have greater potential for industrial interfuel substitution," Energy Economics, Elsevier, vol. 47(C), pages 168-177.
    15. Uz, Dilek, 2018. "Energy efficiency investments in small and medium sized manufacturing firms: The case of California energy crisis," Energy Economics, Elsevier, vol. 70(C), pages 421-428.
    16. Díaz, Antonia & Puch, Luis A., 2013. "A theory of vintage capital investment and energy use," UC3M Working papers. Economics we1320, Universidad Carlos III de Madrid. Departamento de Economía.
    17. Dargay, Joyce M., 1980. "The Demand for Energy in Swedish Manufacturing," Working Paper Series 33, Research Institute of Industrial Economics, revised Aug 1982.
    18. Solnørdal, Mette Talseth & Thyholdt, Sverre Braathen, 2019. "Absorptive capacity and energy efficiency in manufacturing firms – An empirical analysis in Norway," Energy Policy, Elsevier, vol. 132(C), pages 978-990.
    19. Dong Hee Suh, 2015. "Declining Energy Intensity in the U.S. Agricultural Sector: Implications for Factor Substitution and Technological Change," Sustainability, MDPI, vol. 7(10), pages 1-14, September.
    20. Andersen, Trude Berg & Nilsen, Odd Bjarte & Tveteras, Ragnar, 2011. "How is demand for natural gas determined across European industrial sectors?," Energy Policy, Elsevier, vol. 39(9), pages 5499-5508, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:47:y:2012:i:c:p:437-446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.