IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v42y2012icp19-36.html
   My bibliography  Save this article

Decomposition analysis of gas consumption in the residential sector in Ireland

Author

Listed:
  • Rogan, Fionn
  • Cahill, Caiman J.
  • Ó Gallachóir, Brian P.

Abstract

To-date, decomposition analysis has been widely used at the macro-economic level and for in-depth analyses of the industry and transport sectors; however, its application in the residential sector has been rare. This paper uses the Log-Mean Divisia Index I (LMDI-I) methodology to decompose gas consumption trends in the gas-connected residential sector in Ireland from 1990 to 2008, which despite an increasing number of energy efficiency policies, experienced total final consumption growth of 470%. The analysis decomposes this change in gas consumption into a number of effects, examining the impact over time of market factors such as a growing customer base, varying mix of dwelling types, changing share of vacant dwellings, changing size of new dwellings, the impact of building regulations policy and other factors such as the weather. The analysis finds the most significant effects are changing customer numbers and changing intensity; the analysis also quantifies the impact of building regulations and compares it with other effects such as changing size of new dwellings. By comparing the historical impact on gas consumption of policy factors and non-policy factors, this paper highlights the challenge for policy-makers in achieving overall energy consumption reduction.

Suggested Citation

  • Rogan, Fionn & Cahill, Caiman J. & Ó Gallachóir, Brian P., 2012. "Decomposition analysis of gas consumption in the residential sector in Ireland," Energy Policy, Elsevier, vol. 42(C), pages 19-36.
  • Handle: RePEc:eee:enepol:v:42:y:2012:i:c:p:19-36
    DOI: 10.1016/j.enpol.2011.10.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421511008743
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2011.10.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ang, B. W., 2004. "Decomposition analysis for policymaking in energy:: which is the preferred method?," Energy Policy, Elsevier, vol. 32(9), pages 1131-1139, June.
    2. Scott, S., 1997. "Household energy efficiency in Ireland: A replication study of ownership of energy saving items," Energy Economics, Elsevier, vol. 19(2), pages 187-208, May.
    3. Lyons, Sean & Mayor, Karen & Tol, Richard S.J., 2009. "Convergence of consumption patterns during macroeconomic transition: A model of demand in Ireland and the OECD," Economic Modelling, Elsevier, vol. 26(3), pages 702-714, May.
    4. Unander, Fridtjof & Ettestol, Ingunn & Ting, Mike & Schipper, Lee, 2004. "Residential energy use: an international perspective on long-term trends in Denmark, Norway and Sweden," Energy Policy, Elsevier, vol. 32(12), pages 1395-1404, August.
    5. Diffney, Seán & Lyons, Seán & Malaguzzi Valeri, Laura, 2013. "Evaluation of the effect of the Power of One campaign on natural gas consumption," Energy Policy, Elsevier, vol. 62(C), pages 978-988.
    6. Sun, J. W., 1998. "Changes in energy consumption and energy intensity: A complete decomposition model," Energy Economics, Elsevier, vol. 20(1), pages 85-100, February.
    7. Chung, Hyun-Sik & Rhee, Hae-Chun, 2001. "A residual-free decomposition of the sources of carbon dioxide emissions: a case of the Korean industries," Energy, Elsevier, vol. 26(1), pages 15-30.
    8. O'Doherty, Joe & Lyons, Sean & Tol, Richard S.J., 2008. "Energy-using appliances and energy-saving features: Determinants of ownership in Ireland," Applied Energy, Elsevier, vol. 85(7), pages 650-662, July.
    9. Donglan, Zha & Dequn, Zhou & Peng, Zhou, 2010. "Driving forces of residential CO2 emissions in urban and rural China: An index decomposition analysis," Energy Policy, Elsevier, vol. 38(7), pages 3377-3383, July.
    10. Achão, Carla & Schaeffer, Roberto, 2009. "Decomposition analysis of the variations in residential electricity consumption in Brazil for the 1980-2007 period: Measuring the activity, intensity and structure effects," Energy Policy, Elsevier, vol. 37(12), pages 5208-5220, December.
    11. Wachsmann, Ulrike & Wood, Richard & Lenzen, Manfred & Schaeffer, Roberto, 2009. "Structural decomposition of energy use in Brazil from 1970 to 1996," Applied Energy, Elsevier, vol. 86(4), pages 578-587, April.
    12. Watson, Dorothy & Williams, James, 2003. "Irish National Survey of Housing Quality 2001-2002," Research Series, Economic and Social Research Institute (ESRI), number BMI173, June.
    13. Hull, David & Ó Gallachóir, Brian P. & Walker, Neil, 2009. "Development of a modelling framework in response to new European energy-efficiency regulatory obligations: The Irish experience," Energy Policy, Elsevier, vol. 37(12), pages 5363-5375, December.
    14. Ang, B.W. & Liu, Na, 2007. "Energy decomposition analysis: IEA model versus other methods," Energy Policy, Elsevier, vol. 35(3), pages 1426-1432, March.
    15. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    16. Rogan, Fionn & Dennehy, Emer & Daly, Hannah & Howley, Martin & Ó Gallachóir, Brian P., 2011. "Impacts of an emission based private car taxation policy - First year ex-post analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 583-597, August.
    17. Cahill, Caiman J. & Ó Gallachóir, Brian P., 2010. "Monitoring energy efficiency trends in European industry: Which top-down method should be used?," Energy Policy, Elsevier, vol. 38(11), pages 6910-6918, November.
    18. Munksgaard, Jesper & Pedersen, Klaus Alsted & Wien, Mette, 2000. "Impact of household consumption on CO2 emissions," Energy Economics, Elsevier, vol. 22(4), pages 423-440, August.
    19. Zhang, Lixiao & Yang, Zhifeng & Chen, Bin & Chen, Guoqian, 2009. "Rural energy in China: Pattern and policy," Renewable Energy, Elsevier, vol. 34(12), pages 2813-2823.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Curtis, John & McCoy, Daire & Aravena, Claudia, 2018. "Heating system upgrades: The role of knowledge, socio-demographics, building attributes and energy infrastructure," Energy Policy, Elsevier, vol. 120(C), pages 183-196.
    2. McCoy, Daire & Curtis, John, 2016. "The Timing and other Determinants of Gas Central Heating Adoption," Papers WP539, Economic and Social Research Institute (ESRI).
    3. Lin, Boqiang & Moubarak, Mohamed, 2014. "Estimation of energy saving potential in China's paper industry," Energy, Elsevier, vol. 65(C), pages 182-189.
    4. Hongguang Nie & René Kemp & Véronique Vasseur, 2020. "Exploring the Changing Gap of Residential Energy Consumption per Capita in China and the Netherlands: A Comparative Analysis of Driving Forces," Sustainability, MDPI, vol. 12(11), pages 1-17, June.
    5. Chiodi, Alessandro & Gargiulo, Maurizio & Rogan, Fionn & Deane, J.P. & Lavigne, Denis & Rout, Ullash K. & Ó Gallachóir, Brian P., 2013. "Modelling the impacts of challenging 2050 European climate mitigation targets on Ireland’s energy system," Energy Policy, Elsevier, vol. 53(C), pages 169-189.
    6. Curtis, John & Tovar, Miguel Angel & Grilli, Gianluca, 2020. "Access to and consumption of natural gas: Spatial and socio-demographic drivers," Energy Policy, Elsevier, vol. 143(C).
    7. Harold, Jason & Lyons, Seán & Cullinan, John, 2015. "The determinants of residential gas demand in Ireland," Energy Economics, Elsevier, vol. 51(C), pages 475-483.
    8. Trotta, Gianluca, 2020. "Assessing energy efficiency improvements and related energy security and climate benefits in Finland: An ex post multi-sectoral decomposition analysis," Energy Economics, Elsevier, vol. 86(C).
    9. Holzmann, Angela & Adensam, Heidelinde & Kratena, Kurt & Schmid, Erwin, 2013. "Decomposing final energy use for heating in the residential sector in Austria," Energy Policy, Elsevier, vol. 62(C), pages 607-616.
    10. Huang, Yun-Hsun, 2020. "Examining impact factors of residential electricity consumption in Taiwan using index decomposition analysis based on end-use level data," Energy, Elsevier, vol. 213(C).
    11. Curtis, John & Grilli, Gianluca, 2020. "Does moving home affect residential heating decisions? exploring heating fuel switching in Ireland," Papers WP684, Economic and Social Research Institute (ESRI).
    12. McCoy, Daire & Curtis, John, 2018. "Exploring the spatial and temporal determinants of gas central heating adoption," Resource and Energy Economics, Elsevier, vol. 52(C), pages 64-86.
    13. Jennings, Mark G., 2013. "A smarter plan? A policy comparison between Great Britain and Ireland's deployment strategies for rolling out new metering technologies," Energy Policy, Elsevier, vol. 57(C), pages 462-468.
    14. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    15. Curtis, John & McCoy, Daire & Aravena Novielli, Claudia, 2017. "Determinants of residential heating system choice: an analysis of Irish households," Papers WP576, Economic and Social Research Institute (ESRI).
    16. Xu, X.Y. & Ang, B.W., 2014. "Analysing residential energy consumption using index decomposition analysis," Applied Energy, Elsevier, vol. 113(C), pages 342-351.
    17. Gobong Choi & Taeyoon Kim & Minchul Kim, 2021. "LMDI Decomposition Analysis of E-Waste Generation in the ASEAN," IJERPH, MDPI, vol. 18(23), pages 1-15, December.
    18. Feng Dong & Bolin Yu & Yifei Hua & Shuaiqing Zhang & Yue Wang, 2018. "A Comparative Analysis of Residential Energy Consumption in Urban and Rural China: Determinants and Regional Disparities," IJERPH, MDPI, vol. 15(11), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Freitas, Luciano Charlita & Kaneko, Shinji, 2011. "Decomposition of CO2 emissions change from energy consumption in Brazil: Challenges and policy implications," Energy Policy, Elsevier, vol. 39(3), pages 1495-1504, March.
    2. Román-Collado, Rocío & Cansino, José M. & Botia, Camilo, 2018. "How far is Colombia from decoupling? Two-level decomposition analysis of energy consumption changes," Energy, Elsevier, vol. 148(C), pages 687-700.
    3. Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
    4. Huang, Yun-Hsun, 2020. "Examining impact factors of residential electricity consumption in Taiwan using index decomposition analysis based on end-use level data," Energy, Elsevier, vol. 213(C).
    5. Cahill, Caiman J. & Ó Gallachóir, Brian P., 2010. "Monitoring energy efficiency trends in European industry: Which top-down method should be used?," Energy Policy, Elsevier, vol. 38(11), pages 6910-6918, November.
    6. Wang, Yanqiu & Zhu, Zhiwei & Zhu, Zhaoge & Liu, Zhenbin, 2019. "Analysis of China's energy consumption changing using the Mean Rate of Change Index and the logarithmic mean divisia index," Energy, Elsevier, vol. 167(C), pages 275-282.
    7. Cahill, Caiman J. & Ó Gallachóir, Brian P., 2012. "Combining physical and economic output data to analyse energy and CO2 emissions trends in industry," Energy Policy, Elsevier, vol. 49(C), pages 422-429.
    8. Xu, X.Y. & Ang, B.W., 2014. "Analysing residential energy consumption using index decomposition analysis," Applied Energy, Elsevier, vol. 113(C), pages 342-351.
    9. Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
    10. Fernández, Esteban & Fernández, Paula, 2008. "An extension to Sun's decomposition methodology: The Path Based approach," Energy Economics, Elsevier, vol. 30(3), pages 1020-1036, May.
    11. Zhao, Xiaoli & Li, Na & Ma, Chunbo, 2012. "Residential energy consumption in urban China: A decomposition analysis," Energy Policy, Elsevier, vol. 41(C), pages 644-653.
    12. Dequn Zhou & Xiao Liu & Peng Zhou & Qunwei Wang, 2017. "Decomposition Analysis of Aggregate Energy Consumption in China: An Exploration Using a New Generalized PDA Method," Sustainability, MDPI, vol. 9(5), pages 1-13, April.
    13. Jidong Kang & Tao Zhao & Xiaosong Ren & Tao Lin, 2012. "Using decomposition analysis to evaluate the performance of China’s 30 provinces in CO 2 emission reductions over 2005–2009," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 999-1013, November.
    14. Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
    15. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.
    16. Das, Aparna & Paul, Saikat Kumar, 2014. "CO2 emissions from household consumption in India between 1993–94 and 2006–07: A decomposition analysis," Energy Economics, Elsevier, vol. 41(C), pages 90-105.
    17. Edyta Sidorczuk-Pietraszko, 2020. "Spatial Differences in Carbon Intensity in Polish Households," Energies, MDPI, vol. 13(12), pages 1-21, June.
    18. Fernández González, P. & Presno, M.J. & Landajo, M., 2015. "Regional and sectoral attribution to percentage changes in the European Divisia carbonization index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1437-1452.
    19. Yousaf Raza, Muhammad & Lin, Boqiang, 2023. "Development trend of Pakistan's natural gas consumption: A sectorial decomposition analysis," Energy, Elsevier, vol. 278(PA).
    20. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:42:y:2012:i:c:p:19-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.