IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v148y2021ipbs0301421520307126.html
   My bibliography  Save this article

Effects of vehicle purchase restrictions on urban air quality: Empirical study on cities in China

Author

Listed:
  • He, Xiaoping
  • Jiang, Shuo

Abstract

With the rapid popularization of private cars in China, vehicles have become the primary source of air pollution and traffic congestion in the country. Major cities have successively applied vehicle purchase restrictions to restrict the use of private cars. This paper empirically investigates the environmental effects of vehicle purchase restrictions in six major cities of China, by using the data of daily PM10 concentration at city-level as the major indicator for air pollution. The generalized difference-in-differences model is employed to solve the problems of time inconsistency in policy implementation and discrete changes in policy intensity across cities. The empirical findings show that the restriction policy has significantly slowed down the growth of daily PM10 concentration of the policy-treated cities. Moreover, environmental effects of the policy show certain lags: the treatment effect comes from the second year after the policy implementation, increases significantly in the third year, and reaches another high level in the seventh year. The article argues that the environmental effects result from the induced choice of residents’ reducing the use of private cars and switching to alternative fuel vehicles. Hence, such purchase restriction policies should be complemented by improving the convenience of purchasing and using new-energy vehicles.

Suggested Citation

  • He, Xiaoping & Jiang, Shuo, 2021. "Effects of vehicle purchase restrictions on urban air quality: Empirical study on cities in China," Energy Policy, Elsevier, vol. 148(PB).
  • Handle: RePEc:eee:enepol:v:148:y:2021:i:pb:s0301421520307126
    DOI: 10.1016/j.enpol.2020.112001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520307126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.112001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lucas W. Davis, 2008. "The Effect of Driving Restrictions on Air Quality in Mexico City," Journal of Political Economy, University of Chicago Press, vol. 116(1), pages 38-81, February.
    2. Chen, Yuyu & Jin, Ginger Zhe & Kumar, Naresh & Shi, Guang, 2013. "The promise of Beijing: Evaluating the impact of the 2008 Olympic Games on air quality," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 424-443.
    3. Simon Alder & Lin Shao & Fabrizio Zilibotti, 2016. "Economic reforms and industrial policy in a panel of Chinese cities," Journal of Economic Growth, Springer, vol. 21(4), pages 305-349, December.
    4. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    5. Yang, Xiaofang & Jin, Wen & Jiang, Hai & Xie, Qianyan & Shen, Wei & Han, Weijian, 2017. "Car ownership policies in China: Preferences of residents and influence on the choice of electric cars," Transport Policy, Elsevier, vol. 58(C), pages 62-71.
    6. Hao, Han & Wang, Sinan & Liu, Zongwei & Zhao, Fuquan, 2016. "The impact of stepped fuel economy targets on automaker's light-weighting strategy: The China case," Energy, Elsevier, vol. 94(C), pages 755-765.
    7. Wang, Yunshi & Teter, Jacob & Sperling, Daniel, 2011. "China's soaring vehicle population: Even greater than forecasted?," Energy Policy, Elsevier, vol. 39(6), pages 3296-3306, June.
    8. Fu, Shihe & Gu, Yizhen, 2017. "Highway toll and air pollution: Evidence from Chinese cities," Journal of Environmental Economics and Management, Elsevier, vol. 83(C), pages 32-49.
    9. Liu, Yunxia & Hong, Zaisheng & Liu, Yong, 2016. "Do driving restriction policies effectively motivate commuters to use public transportation?," Energy Policy, Elsevier, vol. 90(C), pages 253-261.
    10. Bubeck, Steffen & Tomaschek, Jan & Fahl, Ulrich, 2016. "Perspectives of electric mobility: Total cost of ownership of electric vehicles in Germany," Transport Policy, Elsevier, vol. 50(C), pages 63-77.
    11. Yang, Jun & Liu, Ying & Qin, Ping & Liu, Antung A., 2014. "A review of Beijing׳s vehicle registration lottery: Short-term effects on vehicle growth and fuel consumption," Energy Policy, Elsevier, vol. 75(C), pages 157-166.
    12. She, Zhen-Yu & Qing Sun, & Ma, Jia-Jun & Xie, Bai-Chen, 2017. "What are the barriers to widespread adoption of battery electric vehicles? A survey of public perception in Tianjin, China," Transport Policy, Elsevier, vol. 56(C), pages 29-40.
    13. Zhang, Wei & Lin Lawell, C.-Y. Cynthia & Umanskaya, Victoria I., 2017. "The effects of license plate-based driving restrictions on air quality: Theory and empirical evidence," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 181-220.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jingjing & Nian, Victor & Jiao, Jianling, 2022. "Diffusion and benefits evaluation of electric vehicles under policy interventions based on a multiagent system dynamics model," Applied Energy, Elsevier, vol. 309(C).
    2. Li, Guodong & Walls, W.D. & Zheng, Xiaoli, 2023. "Differential license plate pricing and electric vehicle adoption in Shanghai, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 172(C).
    3. Haoxuan Hu & Yuchen Zhang & Xi Rao & Yinghua Jin, 2021. "Impact of Technology Innovation on Air Quality—An Empirical Study on New Energy Vehicles in China," IJERPH, MDPI, vol. 18(8), pages 1-13, April.
    4. Zhao, Chunkai & Wang, Yuhang & Ge, Zhenyu, 2023. "Is digital finance environmentally friendly in China? Evidence from shared-bike trips," Transport Policy, Elsevier, vol. 138(C), pages 129-143.
    5. Shang, Wen-Long & Chen, Yishui & Yu, Qing & Song, Xuewang & Chen, Yanyan & Ma, Xiaolei & Chen, Xiqun & Tan, Zhijia & Huang, Jianling & Ochieng, Washington, 2023. "Spatio-temporal analysis of carbon footprints for urban public transport systems based on smart card data," Applied Energy, Elsevier, vol. 352(C).
    6. García-Chan, N. & Alvarez-Vázquez, L.J. & Martínez, A. & Vázquez-Méndez, M.E., 2021. "Designing an ecologically optimized road corridor surrounding restricted urban areas: A mathematical methodology," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 745-759.
    7. Yan, Yingying & Zhong, Shiquan & Tian, Junfang & Jia, Ning, 2022. "An empirical study on consumer automobile purchase intentions influenced by the COVID-19 outbreak," Journal of Transport Geography, Elsevier, vol. 104(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lyu, Xueying, 2022. "Car restriction policies and housing markets," Journal of Development Economics, Elsevier, vol. 156(C).
    2. Yue Hua & Mark Partridge & Weizeng Sun, 2023. "Pollution effects of place‐based policy: Evidence from China's development‐zone program," Journal of Regional Science, Wiley Blackwell, vol. 63(3), pages 703-727, June.
    3. Shihe Fu & V. Brian Viard, 2022. "A mayors perspective on tackling air pollution," Chapters, in: Charles K.Y. Leung (ed.), Handbook of Real Estate and Macroeconomics, chapter 16, pages 413-437, Edward Elgar Publishing.
    4. Han, Qing & Liu, Ying & Lu, Zilong, 2020. "Temporary driving restrictions, air pollution, and contemporaneous health: Evidence from China," Regional Science and Urban Economics, Elsevier, vol. 84(C).
    5. Isaksen, Elisabeth & Johansen, Bjørn G., 2021. "Congestion pricing, air pollution, and individual-level behavioural responses," LSE Research Online Documents on Economics 111493, London School of Economics and Political Science, LSE Library.
    6. Li, Shanjun & Liu, Yanyan & Purevjav, Avralt-Od & Yang, Lin, 2019. "Does subway expansion improve air quality?," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 213-235.
    7. Zhang, Linling & Long, Ruyin & Chen, Hong, 2019. "Do car restriction policies effectively promote the development of public transport?," World Development, Elsevier, vol. 119(C), pages 100-110.
    8. Green, Colin P. & Heywood, John S. & Navarro Paniagua, Maria, 2020. "Did the London congestion charge reduce pollution?," Regional Science and Urban Economics, Elsevier, vol. 84(C).
    9. Rivera, Nathaly M., 2017. "The Effectiveness of Temporary Driving Restrictions: Evidence from Air Pollution, Vehicle Flows, and Mass-Transit Users in Santiago," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259182, Agricultural and Applied Economics Association.
    10. Rivera, Nathaly M., 2021. "Air quality warnings and temporary driving bans: Evidence from air pollution, car trips, and mass-transit ridership in Santiago," Journal of Environmental Economics and Management, Elsevier, vol. 108(C).
    11. Shuhei Nishitateno & Paul J. Burke, 2020. "Have Vehicle Registration Restrictions Improved Urban Air Quality In Japan?," Contemporary Economic Policy, Western Economic Association International, vol. 38(3), pages 448-459, July.
    12. Li, Wenbo, 2023. "The effect of China's driving restrictions on air pollution: The role of a policy announcement without a stated expiration," Resource and Energy Economics, Elsevier, vol. 72(C).
    13. Rhiannon Jerch & Panle Jia Barwick & Shanjun Li & Jing Wu, 2020. "Road Rationing Policies and Housing Markets," DETU Working Papers 2004, Department of Economics, Temple University.
    14. Wenbo Meng, 2022. "Understanding the Heterogeneity in the Effect of Driving Restriction Policies on Air Quality: Evidence from Chinese Cities," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 82(1), pages 133-175, May.
    15. Ying Wang & Jing Tao & Rong Wang & Chuanmin Mi, 2020. "Can the New Subway Line Openings Mitigate PM10 Concentration? Evidence from Chinese Cities Based on the PSM-DID Method," IJERPH, MDPI, vol. 17(13), pages 1-19, June.
    16. Liu, Zhiyong & Li, Ruimin & Wang, Xiaokun(Cara) & Shang, Pan, 2018. "Effects of vehicle restriction policies: Analysis using license plate recognition data in Langfang, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 89-103.
    17. Isaksen, Elisabeth T. & Johansen, Bjørn G., 2021. "Congestion pricing, air pollution, and individual-level behavioral responses," Memorandum 1/2021, Oslo University, Department of Economics.
    18. Xin Li & Shuhan Jiang & Tianqi Wang & Jia Hu & Yun Yuan, 2022. "Evaluating the impact of partial driving restrictions on local air quality in Chongqing using regression discontinuity design," Environment and Planning B, , vol. 49(2), pages 464-484, February.
    19. Qian, Lixian & Grisolía, Jose M. & Soopramanien, Didier, 2019. "The impact of service and government-policy attributes on consumer preferences for electric vehicles in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 70-84.
    20. Li, Tianshu & Song, Shunfeng & Yang, Yanmin, 2022. "Driving restrictions, traffic speeds and carbon emissions: Evidence from high-frequency data," China Economic Review, Elsevier, vol. 74(C).

    More about this item

    Keywords

    Vehicle purchase restriction; Urban air quality; PM10; DID model;
    All these keywords.

    JEL classification:

    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy
    • R40 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:148:y:2021:i:pb:s0301421520307126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.