IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v147y2020ics0301421520305929.html
   My bibliography  Save this article

The unintended impact of carbon trading of China's power sector

Author

Listed:
  • Zhang, Hui
  • Zhang, Bing

Abstract

Carbon trading is considered a strategy for reallocating carbon permits and reducing abatement costs that may also change energy consumption and the distribution of atmospheric pollution emissions, resulting in environmental health benefits or damage on a regional scale. In this research, we use an agent-based model to construct a national carbon emissions trading market of the power sector based on the year of 2013, and simulate the key atmospheric pollution emission patterns and the corresponding environmental health effects. We find that compared with a command and control policy, the carbon trading policy is able to reduce the CO2 emissions and save abatement costs by approximately 63.53 RMB/ton. Meanwhile, the results show the carbon trading policy would synergistically reduce PM2.5 emissions by 1.55 million tons. Addition, we use a simplified exposure-response model to estimate health benefits by synergistically reducing PM2.5 emissions, and find that the carbon trading policy would decrease 45,200 cases of all-cause mortality and generate 307.07 billion RMB in environmental health benefits. The co-benefit accounts for 0.52% of the nation's gross domestic product (GDP) in 2013. However, compared with the command and control policy, carbon trading changes the pollution emission distribution among the different provinces, and results in unintended environmental health damages in some provinces. Setting reasonable trading directions and exchange ratios, increasing stringency of environmental regulations in some provinces with worsening air pollution should be implemented to complement the carbon trading policy.

Suggested Citation

  • Zhang, Hui & Zhang, Bing, 2020. "The unintended impact of carbon trading of China's power sector," Energy Policy, Elsevier, vol. 147(C).
  • Handle: RePEc:eee:enepol:v:147:y:2020:i:c:s0301421520305929
    DOI: 10.1016/j.enpol.2020.111876
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520305929
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cramton, Peter & Kerr, Suzi, 2002. "Tradeable carbon permit auctions: How and why to auction not grandfather," Energy Policy, Elsevier, vol. 30(4), pages 333-345, March.
    2. Toon Vandyck & Kimon Keramidas & Alban Kitous & Joseph V. Spadaro & Rita Van Dingenen & Mike Holland & Bert Saveyn, 2018. "Air quality co-benefits for human health and agriculture counterbalance costs to meet Paris Agreement pledges," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    3. Hainoun, A. & Almoustafa, A. & Seif Aldin, M., 2010. "Estimating the health damage costs of syrian electricity generation system using impact pathway approach," Energy, Elsevier, vol. 35(2), pages 628-638.
    4. Guo, Xiaoqi & Haab, Timothy C. & Hammitt, James K., 2006. "Contingent Valuation and the Economic Value of Air-Pollution-Related Health Risks in China," 2006 Annual meeting, July 23-26, Long Beach, CA 21366, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    5. Viscusi, W Kip & Aldy, Joseph E, 2003. "The Value of a Statistical Life: A Critical Review of Market Estimates throughout the World," Journal of Risk and Uncertainty, Springer, vol. 27(1), pages 5-76, August.
    6. Liu, Beibei & He, Pan & Zhang, Bing & Bi, Jun, 2012. "Impacts of alternative allowance allocation methods under a cap-and-trade program in power sector," Energy Policy, Elsevier, vol. 47(C), pages 405-415.
    7. James Hammitt & Ying Zhou, 2006. "The Economic Value of Air-Pollution-Related Health Risks in China: A Contingent Valuation Study," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 33(3), pages 399-423, March.
    8. Mingwei Li & Da Zhang & Chiao-Ting Li & Kathleen M. Mulvaney & Noelle E. Selin & Valerie J. Karplus, 2018. "Air quality co-benefits of carbon pricing in China," Nature Climate Change, Nature, vol. 8(5), pages 398-403, May.
    9. Hoffmann, Sandra & Qin, Ping & Krupnick, Alan & Badrakh, Burmaajav & Batbaatar, Suvd & Altangerel, Enkhjargal & Sereeter, Lodoysamba, 2012. "The willingness to pay for mortality risk reductions in Mongolia," Resource and Energy Economics, Elsevier, vol. 34(4), pages 493-513.
    10. Aunan, Kristin & Fang, Jinghua & Vennemo, Haakon & Oye, Kenneth & Seip, Hans M., 2004. "Co-benefits of climate policy--lessons learned from a study in Shanxi, China," Energy Policy, Elsevier, vol. 32(4), pages 567-581, March.
    11. repec:reg:rpubli:282 is not listed on IDEAS
    12. J. Jason West & Steven J. Smith & Raquel A. Silva & Vaishali Naik & Yuqiang Zhang & Zachariah Adelman & Meridith M. Fry & Susan Anenberg & Larry W. Horowitz & Jean-Francois Lamarque, 2013. "Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health," Nature Climate Change, Nature, vol. 3(10), pages 885-889, October.
    13. J. Lelieveld & J. S. Evans & M. Fnais & D. Giannadaki & A. Pozzer, 2015. "The contribution of outdoor air pollution sources to premature mortality on a global scale," Nature, Nature, vol. 525(7569), pages 367-371, September.
    14. Tammy M. Thompson & Sebastian Rausch & Rebecca K. Saari & Noelle E. Selin, 2014. "A systems approach to evaluating the air quality co-benefits of US carbon policies," Nature Climate Change, Nature, vol. 4(10), pages 917-923, October.
    15. Charles T. Driscoll & Jonathan J. Buonocore & Jonathan I. Levy & Kathleen F. Lambert & Dallas Burtraw & Stephen B. Reid & Habibollah Fakhraei & Joel Schwartz, 2015. "US power plant carbon standards and clean air and health co-benefits," Nature Climate Change, Nature, vol. 5(6), pages 535-540, June.
    16. Alan Krupnick, 2007. "Mortality-risk Valuation and Age: Stated Preference Evidence," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 1(2), pages 261-282, Summer.
    17. Nicholas Z. Muller & Robert Mendelsohn, 2009. "Efficient Pollution Regulation: Getting the Prices Right," American Economic Review, American Economic Association, vol. 99(5), pages 1714-1739, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Yu & Chi, Yuanying & Zhou, Wenbing & Li, Jialin & Wang, Zhengzao & Yuan, Yongke, 2023. "The interactions between renewable portfolio standards and carbon emission trading in China: An evolutionary game theory perspective," Energy, Elsevier, vol. 271(C).
    2. Jiang, Hong-Dian & Purohit, Pallav & Liang, Qiao-Mei & Liu, Li-Jing & Zhang, Yu-Fei, 2023. "Improving the regional deployment of carbon mitigation efforts by incorporating air-quality co-benefits: A multi-provincial analysis of China," Ecological Economics, Elsevier, vol. 204(PA).
    3. Nan Li & Beibei Shi & Rong Kang, 2021. "Information Disclosure, Coal Withdrawal and Carbon Emissions Reductions: A Policy Test Based on China’s Environmental Information Disclosure," Sustainability, MDPI, vol. 13(17), pages 1-24, August.
    4. Wang, Xu & Zhu, Lei & Liu, Pengfei, 2021. "Manipulation via endowments: Quantifying the influence of market power on the emission trading scheme," Energy Economics, Elsevier, vol. 103(C).
    5. Chengqing Liu & Dan Yang & Jun Sun & Yu Cheng, 2023. "The Impact of Environmental Regulations on Pollution and Carbon Reduction in the Yellow River Basin, China," IJERPH, MDPI, vol. 20(3), pages 1-21, January.
    6. Shanglei Chai & Ruixuan Sun & Ke Zhang & Yueting Ding & Wei Wei, 2022. "Is Emissions Trading Scheme (ETS) an Effective Market-Incentivized Environmental Regulation Policy? Evidence from China’s Eight ETS Pilots," IJERPH, MDPI, vol. 19(6), pages 1-18, March.
    7. Feng Xiong & Xiaoyu Zeng & Yi (Fionna) Xie & Yan Li, 2022. "Design (Allocation) of a Carbon Emission System—A Lesson from Power Restrictions in Zhejiang, China," Sustainability, MDPI, vol. 14(19), pages 1-31, September.
    8. Enci Wang & Jianyun Nie & Hong Zhan, 2022. "The Impact of Carbon Emissions Trading on the Profitability and Debt Burden of Listed Companies," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    9. Zhang, Wei & Li, Guoxiang & Guo, Fanyong, 2022. "Does carbon emissions trading promote green technology innovation in China?," Applied Energy, Elsevier, vol. 315(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Libin & Tang, Yiqi & Cai, Bofeng & Wu, Pengcheng & Zhang, Yansen & Zhang, Fengxue & Xin, Bo & Lv, Chen & Chen, Kai & Fang, Kai, 2021. "Was it better or worse? Simulating the environmental and health impacts of emissions trading scheme in Hubei province, China," Energy, Elsevier, vol. 217(C).
    2. Jiang, Xueting, 2023. "Rapid decarbonization in the Chinese electric power sector and air pollution reduction Co-benefits in the Post-COP26 Era," Resources Policy, Elsevier, vol. 82(C).
    3. Lars Hein & Pete Roberts & Lucia Gonzalez, 2016. "Valuing a Statistical Life Year in Relation to Clean Air," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 18(04), pages 1-24, December.
    4. Wei, Xinyang & Tong, Qing & Magill, Iain & Vithayasrichareon, Peerapat & Betz, Regina, 2020. "Evaluation of potential co-benefits of air pollution control and climate mitigation policies for China's electricity sector," Energy Economics, Elsevier, vol. 92(C).
    5. Hammitt, James K. & Robinson, Lisa A., 2011. "The Income Elasticity of the Value per Statistical Life: Transferring Estimates between High and Low Income Populations," Journal of Benefit-Cost Analysis, Cambridge University Press, vol. 2(1), pages 1-29, January.
    6. Henrik Lindhjem & Ståle Navrud & Nils Axel Braathen & Vincent Biausque, 2011. "Valuing Mortality Risk Reductions from Environmental, Transport, and Health Policies: A Global Meta‐Analysis of Stated Preference Studies," Risk Analysis, John Wiley & Sons, vol. 31(9), pages 1381-1407, September.
    7. Henrik Andersson & James Hammitt & Gunnar Lindberg & Kristian Sundström, 2013. "Willingness to Pay and Sensitivity to Time Framing: A Theoretical Analysis and an Application on Car Safety," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 437-456, November.
    8. Brajer, Victor & Mead, Robert W. & Xiao, Feng, 2008. "Health benefits of tunneling through the Chinese environmental Kuznets curve (EKC)," Ecological Economics, Elsevier, vol. 66(4), pages 674-686, July.
    9. Avraham Ebenstein & Maoyong Fan & Michael Greenstone & Guojun He & Peng Yin & Maigeng Zhou, 2015. "Growth, Pollution, and Life Expectancy: China from 1991-2012," American Economic Review, American Economic Association, vol. 105(5), pages 226-231, May.
    10. Toon Vandyck & Kimon Keramidas & Stéphane Tchung-Ming & Matthias Weitzel & Rita Dingenen, 2020. "Quantifying air quality co-benefits of climate policy across sectors and regions," Climatic Change, Springer, vol. 163(3), pages 1501-1517, December.
    11. Bangzhu Zhu & Runzhi Pang & Julien Chevallier & Yi-Ming Wei & Dinh-Tri Vo, 2019. "Including intangible costs into the cost-of-illness approach: a method refinement illustrated based on the PM2.5 economic burden in China," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 20(4), pages 501-511, June.
    12. repec:gii:giihei:ciesrp:cies_rp_26 is not listed on IDEAS
    13. He, Guojun & Fan, Maoyong & Zhou, Maigeng, 2016. "The effect of air pollution on mortality in China: Evidence from the 2008 Beijing Olympic Games," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 18-39.
    14. Courard-Hauri David & Lauer Stephen A., 2012. "Taking "All Men Are Created Equal" Seriously: Toward a Metric for the Intergroup Comparison of Utility Functions Through Life Values," Journal of Benefit-Cost Analysis, De Gruyter, vol. 3(3), pages 1-30, August.
    15. Thijs Dekker & Roy Brouwer & Marjan Hofkes & Klaus Moeltner, 2011. "The Effect of Risk Context on the Value of a Statistical Life: a Bayesian Meta-model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 49(4), pages 597-624, August.
    16. Cem Tekeşin & Shihomi Ara, 2014. "Measuring the Value of Mortality Risk Reductions in Turkey," IJERPH, MDPI, vol. 11(7), pages 1-33, July.
    17. Jonathan J Buonocore & Kathleen F Lambert & Dallas Burtraw & Samantha Sekar & Charles T Driscoll, 2016. "An Analysis of Costs and Health Co-Benefits for a U.S. Power Plant Carbon Standard," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-11, June.
    18. Khuc, Quy Van & Nong, Duy & Phu Vu, Tri, 2022. "To pay or not to pay that is the question - for air pollution mitigation in a world’s dynamic city: An experiment in Hanoi, Vietnam," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 687-701.
    19. Anthony Boardman & Jeff Geng & Bruno Lam, 2020. "The Social Cost of Informal Electronic Waste Processing in Southern China," Administrative Sciences, MDPI, vol. 10(1), pages 1-20, February.
    20. Shihomi Ara & Cem Tekeşin, 2017. "The Monetary Valuation of Lifetime Health Improvement and Life Expectancy Gains in Turkey," IJERPH, MDPI, vol. 14(10), pages 1-27, September.
    21. Sileci, Lorenzo, 2023. "Carbon pricing with regressive co-benefits: evidence from British Columbia’s carbon tax," LSE Research Online Documents on Economics 121047, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:147:y:2020:i:c:s0301421520305929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.