IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v131y2019icp9-21.html
   My bibliography  Save this article

Clean and secure power supply: A system dynamics based appraisal

Author

Listed:
  • Zapata, Sebastian
  • Castaneda, Monica
  • Franco, Carlos Jaime
  • Dyner, Isaac

Abstract

Across the world, the electricity industry is changing with the advent of renewable energy sources such as solar and wind power. As these are exposed to intermittency, seasonality, and global-climate-variation, policy-makers' concerns are now shifting towards security of supply. In fact, the industry confronts three conflicting goals: security of supply, competitive prices to customers, and environmental protection. In this context, and given the multiple uncertainties of technology transformation, this paper uses modelling-based scenario analysis to investigate different extreme and plausible futures. Simulation is used to analyse policies aimed at increasing the penetration of renewables and to explore how these energy sources may affect system reliability. This paper explores the effect of incorporating renewables in Colombia, where a large hydroelectric component has led to insufficient electricity being available during droughts and to high electricity price volatility. Though not intuitive at first glance, this paper shows that renewables may contribute to: i) increased security of supply through complementarity, e.g., it does not rain when the sun shines; ii) reduced price volatility in the medium-term, and iii) increased industry sustainability.

Suggested Citation

  • Zapata, Sebastian & Castaneda, Monica & Franco, Carlos Jaime & Dyner, Isaac, 2019. "Clean and secure power supply: A system dynamics based appraisal," Energy Policy, Elsevier, vol. 131(C), pages 9-21.
  • Handle: RePEc:eee:enepol:v:131:y:2019:i:c:p:9-21
    DOI: 10.1016/j.enpol.2019.04.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519302770
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.04.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Palzer, Andreas & Henning, Hans-Martin, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies – Part II: Results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1019-1034.
    2. Heard, B.P. & Brook, B.W. & Wigley, T.M.L. & Bradshaw, C.J.A., 2017. "Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1122-1133.
    3. Castro-Rodriguez, Fidel & Marín, Pedro L. & Siotis, Georges, 2009. "Capacity choices in liberalised electricity markets," Energy Policy, Elsevier, vol. 37(7), pages 2574-2581, July.
    4. François, B. & Borga, M. & Creutin, J.D. & Hingray, B. & Raynaud, D. & Sauterleute, J.F., 2016. "Complementarity between solar and hydro power: Sensitivity study to climate characteristics in Northern-Italy," Renewable Energy, Elsevier, vol. 86(C), pages 543-553.
    5. Walter Vergara & Alejandro Deeb & Natsuko Toba & Peter Cramton & Irene Leino, 2010. "Wind Energy in Colombia : A Framework for Market Entry," World Bank Publications - Books, The World Bank Group, number 2493, December.
    6. David M. Newbery, 2002. "Regulatory Challenges to European Electricity Liberalisation," Working Papers EP12, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    7. Gouveia, João Pedro & Dias, Luís & Martins, Inês & Seixas, Júlia, 2014. "Effects of renewables penetration on the security of Portuguese electricity supply," Applied Energy, Elsevier, vol. 123(C), pages 438-447.
    8. Almeida Prado, Fernando & Athayde, Simone & Mossa, Joann & Bohlman, Stephanie & Leite, Flavia & Oliver-Smith, Anthony, 2016. "How much is enough? An integrated examination of energy security, economic growth and climate change related to hydropower expansion in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1132-1136.
    9. Blakers, Andrew & Lu, Bin & Stocks, Matthew, 2017. "100% renewable electricity in Australia," Energy, Elsevier, vol. 133(C), pages 471-482.
    10. Sadiqa, Ayesha & Gulagi, Ashish & Breyer, Christian, 2018. "Energy transition roadmap towards 100% renewable energy and role of storage technologies for Pakistan by 2050," Energy, Elsevier, vol. 147(C), pages 518-533.
    11. Destek, Mehmet Akif & Aslan, Alper, 2017. "Renewable and non-renewable energy consumption and economic growth in emerging economies: Evidence from bootstrap panel causality," Renewable Energy, Elsevier, vol. 111(C), pages 757-763.
    12. Ponzo, Ricardo & Dyner, Isaac & Arango, Santiago & Larsen, Erik R., 2011. "Regulation and development of the Argentinean gas market," Energy Policy, Elsevier, vol. 39(3), pages 1070-1079, March.
    13. Newbery, David, 2016. "Missing money and missing markets: Reliability, capacity auctions and interconnectors," Energy Policy, Elsevier, vol. 94(C), pages 401-410.
    14. de Jong, Pieter & Dargaville, Roger & Silver, Jeremy & Utembe, Steven & Kiperstok, Asher & Torres, Ednildo Andrade, 2017. "Forecasting high proportions of wind energy supplying the Brazilian Northeast electricity grid," Applied Energy, Elsevier, vol. 195(C), pages 538-555.
    15. Edsand, Hans-Erik, 2017. "Identifying barriers to wind energy diffusion in Colombia: A function analysis of the technological innovation system and the wider context," Technology in Society, Elsevier, vol. 49(C), pages 1-15.
    16. García-Gusano, Diego & Iribarren, Diego & Garraín, Daniel, 2017. "Prospective analysis of energy security: A practical life-cycle approach focused on renewable power generation and oriented towards policy-makers," Applied Energy, Elsevier, vol. 190(C), pages 891-901.
    17. de Jong, P. & Sánchez, A.S. & Esquerre, K. & Kalid, R.A. & Torres, E.A., 2013. "Solar and wind energy production in relation to the electricity load curve and hydroelectricity in the northeast region of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 526-535.
    18. de Vries, Laurens & Heijnen, Petra, 2008. "The impact of electricity market design upon investment under uncertainty: The effectiveness of capacity mechanisms," Utilities Policy, Elsevier, vol. 16(3), pages 215-227, September.
    19. Franco, Carlos J. & Castaneda, Monica & Dyner, Isaac, 2015. "Simulating the new British Electricity-Market Reform," European Journal of Operational Research, Elsevier, vol. 245(1), pages 273-285.
    20. De Oliveira-De Jesus, Paulo M., 2019. "Effect of generation capacity factors on carbon emission intensity of electricity of Latin America & the Caribbean, a temporal IDA-LMDI analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 516-526.
    21. Rodilla, P. & Batlle, C., 2012. "Security of electricity supply at the generation level: Problem analysis," Energy Policy, Elsevier, vol. 40(C), pages 177-185.
    22. Mason, I.G. & Page, S.C. & Williamson, A.G., 2013. "Security of supply, energy spillage control and peaking options within a 100% renewable electricity system for New Zealand," Energy Policy, Elsevier, vol. 60(C), pages 324-333.
    23. de Jong, Pieter & Kiperstok, Asher & Sánchez, Antonio Santos & Dargaville, Roger & Torres, Ednildo Andrade, 2016. "Integrating large scale wind power into the electricity grid in the Northeast of Brazil," Energy, Elsevier, vol. 100(C), pages 401-415.
    24. Henning, Hans-Martin & Palzer, Andreas, 2014. "A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—Part I: Methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 1003-1018.
    25. Peter Cramton & Steven Stoft & Jeffrey West, 2006. "Simulation of the Colombian Firm Energy Market," Papers of Peter Cramton 06scfem, University of Maryland, Department of Economics - Peter Cramton, revised 2006.
    26. Henao, Felipe & Rodriguez, Yeny & Viteri, Juan Pablo & Dyner, Isaac, 2019. "Optimising the insertion of renewables in the Colombian power sector," Renewable Energy, Elsevier, vol. 132(C), pages 81-92.
    27. Kougias, Ioannis & Szabó, Sándor & Monforti-Ferrario, Fabio & Huld, Thomas & Bódis, Katalin, 2016. "A methodology for optimization of the complementarity between small-hydropower plants and solar PV systems," Renewable Energy, Elsevier, vol. 87(P2), pages 1023-1030.
    28. Esteban, Miguel & Portugal-Pereira, Joana, 2014. "Post-disaster resilience of a 100% renewable energy system in Japan," Energy, Elsevier, vol. 68(C), pages 756-764.
    29. Kruangpradit, P. & Tayati, W., 1996. "Hybrid renewable energy system development in Thailand," Renewable Energy, Elsevier, vol. 8(1), pages 514-517.
    30. Joskow, Paul L., 2008. "Capacity payments in imperfect electricity markets: Need and design," Utilities Policy, Elsevier, vol. 16(3), pages 159-170, September.
    31. Beluco, Alexandre & Kroeff de Souza, Paulo & Krenzinger, Arno, 2012. "A method to evaluate the effect of complementarity in time between hydro and solar energy on the performance of hybrid hydro PV generating plants," Renewable Energy, Elsevier, vol. 45(C), pages 24-30.
    32. Osorio, Sebastian & van Ackere, Ann, 2016. "From nuclear phase-out to renewable energies in the Swiss electricity market," Energy Policy, Elsevier, vol. 93(C), pages 8-22.
    33. McPherson, Madeleine & Harvey, L.D. Danny & Karney, Bryan, 2017. "System design and operation for integrating variable renewable energy resources through a comprehensive characterization framework," Renewable Energy, Elsevier, vol. 113(C), pages 1019-1032.
    34. David M. Newbery, 2012. "Contracting for Wind Generation," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 2).
    35. Isaac Dyner, 2000. "Energy modelling platforms for policy and strategy support," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(2), pages 136-144, February.
    36. Schmidt, Johannes & Cancella, Rafael & Pereira, Amaro O., 2016. "An optimal mix of solar PV, wind and hydro power for a low-carbon electricity supply in Brazil," Renewable Energy, Elsevier, vol. 85(C), pages 137-147.
    37. Batlle, Carlos & Barroso, Luiz A. & Pérez-Arriaga, Ignacio J., 2010. "The changing role of the State in the expansion of electricity supply in Latin America," Energy Policy, Elsevier, vol. 38(11), pages 7152-7160, November.
    38. Paul L. Joskow, 2008. "Lessons Learned from Electricity Market Liberalization," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 9-42.
    39. Rodilla, P. & Batlle, C. & Salazar, J. & Sánchez, J.J., 2011. "Modeling generation expansion in the context of a security of supply mechanism based on long-term auctions. Application to the Colombian case," Energy Policy, Elsevier, vol. 39(1), pages 176-186, January.
    40. De Vries, Laurens J., 2007. "Generation adequacy: Helping the market do its job," Utilities Policy, Elsevier, vol. 15(1), pages 20-35, March.
    41. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2013. "Least cost 100% renewable electricity scenarios in the Australian National Electricity Market," Energy Policy, Elsevier, vol. 59(C), pages 270-282.
    42. Denault, Michel & Dupuis, Debbie & Couture-Cardinal, Sébastien, 2009. "Complementarity of hydro and wind power: Improving the risk profile of energy inflows," Energy Policy, Elsevier, vol. 37(12), pages 5376-5384, December.
    43. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2017. "Generation expansion planning optimisation with renewable energy integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 790-803.
    44. Moreno, Fermín & Martínez-Val, José M., 2011. "Collateral effects of renewable energies deployment in Spain: Impact on thermal power plants performance and management," Energy Policy, Elsevier, vol. 39(10), pages 6561-6574, October.
    45. E R Larsen & D W Bunn, 1999. "Deregulation in electricity: understanding strategic and regulatory risk," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(4), pages 337-344, April.
    46. Scorah, Hugh & Sopinka, Amy & van Kooten, G. Cornelis, 2012. "The economics of storage, transmission and drought: integrating variable wind power into spatially separated electricity grids," Energy Economics, Elsevier, vol. 34(2), pages 536-541.
    47. Batlle, Carlos & Pérez-Arriaga, Ignacio J., 2008. "Design criteria for implementing a capacity mechanism in deregulated electricity markets," Utilities Policy, Elsevier, vol. 16(3), pages 184-193, September.
    48. Cantão, Mauricio P. & Bessa, Marcelo R. & Bettega, Renê & Detzel, Daniel H.M. & Lima, João M., 2017. "Evaluation of hydro-wind complementarity in the Brazilian territory by means of correlation maps," Renewable Energy, Elsevier, vol. 101(C), pages 1215-1225.
    49. Caspary, Georg, 2009. "Gauging the future competitiveness of renewable energy in Colombia," Energy Economics, Elsevier, vol. 31(3), pages 443-449, May.
    50. Hasani-Marzooni, Masoud & Hosseini, Seyed Hamid, 2013. "Dynamic analysis of various investment incentives and regional capacity assignment in Iranian electricity market," Energy Policy, Elsevier, vol. 56(C), pages 271-284.
    51. Joshi, Anand S. & Dincer, Ibrahim & Reddy, Bale V., 2009. "Performance analysis of photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1884-1897, October.
    52. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    53. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    54. Lund, H. & Mathiesen, B.V., 2009. "Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050," Energy, Elsevier, vol. 34(5), pages 524-531.
    55. Zhou, P. & Jin, R.Y. & Fan, L.W., 2016. "Reliability and economic evaluation of power system with renewables: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 537-547.
    56. Peter Cramton & Steven Stoft, 2007. "Colombia Firm Energy Market," Papers of Peter Cramton 07cfem, University of Maryland, Department of Economics - Peter Cramton, revised 2007.
    57. Dyner, Isaac & Larsen, Erik R., 2001. "From planning to strategy in the electricity industry," Energy Policy, Elsevier, vol. 29(13), pages 1145-1154, November.
    58. Elliston, Ben & MacGill, Iain & Diesendorf, Mark, 2014. "Comparing least cost scenarios for 100% renewable electricity with low emission fossil fuel scenarios in the Australian National Electricity Market," Renewable Energy, Elsevier, vol. 66(C), pages 196-204.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zapata, Sebastian & Castaneda, Monica & Aristizabal, Andres J. & Dyner, Isaac, 2022. "Renewables for supporting supply adequacy in Colombia," Energy, Elsevier, vol. 239(PC).
    2. José D. Morcillo & Fabiola Angulo & Carlos J. Franco, 2020. "Analyzing the Hydroelectricity Variability on Power Markets from a System Dynamics and Dynamic Systems Perspective: Seasonality and ENSO Phenomenon," Energies, MDPI, vol. 13(9), pages 1-25, May.
    3. Edward G. Anderson & David R. Keith & Jose Lopez, 2023. "Opportunities for system dynamics research in operations management for public policy," Production and Operations Management, Production and Operations Management Society, vol. 32(6), pages 1895-1920, June.
    4. Dehghan, Hamed & Amin-Naseri, Mohammad Reza & Nahavandi, Nasim, 2021. "A system dynamics model to analyze future electricity supply and demand in Iran under alternative pricing policies," Utilities Policy, Elsevier, vol. 69(C).
    5. Mostafaeipour, Ali & Bidokhti, Abbas & Fakhrzad, Mohammad-Bagher & Sadegheih, Ahmad & Zare Mehrjerdi, Yahia, 2022. "A new model for the use of renewable electricity to reduce carbon dioxide emissions," Energy, Elsevier, vol. 238(PA).
    6. Bjarnhedinn Gudlaugsson & Dana Abi Ghanem & Huda Dawood & Gobind Pillai & Michael Short, 2022. "A Qualitative Based Causal-Loop Diagram for Understanding Policy Design Challenges for a Sustainable Transition Pathway: The Case of Tees Valley Region, UK," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
    7. José D. Morcillo & Fabiola Angulo & Carlos J. Franco, 2021. "Simulation and Analysis of Renewable and Nonrenewable Capacity Scenarios under Hybrid Modeling: A Case Study," Mathematics, MDPI, vol. 9(13), pages 1-26, July.
    8. Tang, Lei & Guo, Jue & Zhao, Boyang & Wang, Xiuli & Shao, Chengcheng & Wang, Yifei, 2021. "Power generation mix evolution based on rolling horizon optimal approach: A system dynamics analysis," Energy, Elsevier, vol. 224(C).
    9. Zapata, Sebastian & Castaneda, Monica & Herrera, Milton M. & Dyner, Isaac, 2023. "Investigating the concurrence of transmission grid expansion and the dissemination of renewables," Energy, Elsevier, vol. 276(C).
    10. Sadhukhan, Jhuma, 2022. "Net zero electricity systems in global economies by life cycle assessment (LCA) considering ecosystem, health, monetization, and soil CO2 sequestration impacts," Renewable Energy, Elsevier, vol. 184(C), pages 960-974.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    2. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2019. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Energy Economics, Elsevier, vol. 80(C), pages 1059-1078.
    3. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2018. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Working Paper Series in Production and Energy 27, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    4. Diesendorf, Mark & Elliston, Ben, 2018. "The feasibility of 100% renewable electricity systems: A response to critics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 318-330.
    5. Canales, Fausto A. & Jurasz, Jakub & Beluco, Alexandre & Kies, Alexander, 2020. "Assessing temporal complementarity between three variable energy sources through correlation and compromise programming," Energy, Elsevier, vol. 192(C).
    6. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    7. Ma, Weiwu & Xue, Xinpei & Liu, Gang, 2018. "Techno-economic evaluation for hybrid renewable energy system: Application and merits," Energy, Elsevier, vol. 159(C), pages 385-409.
    8. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2020. "Benefits from energy policy synchronisation of Brazil’s North-Northeast interconnection," Renewable Energy, Elsevier, vol. 162(C), pages 427-437.
    9. Herrera, Milton M. & Dyner, Isaac & Cosenz, Federico, 2019. "Assessing the effect of transmission constraints on wind power expansion in northeast Brazil," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    10. Osorio, Sebastian & van Ackere, Ann & Larsen, Erik R., 2017. "Interdependencies in security of electricity supply," Energy, Elsevier, vol. 135(C), pages 598-609.
    11. de Jong, Pieter & Kiperstok, Asher & Sánchez, Antonio Santos & Dargaville, Roger & Torres, Ednildo Andrade, 2016. "Integrating large scale wind power into the electricity grid in the Northeast of Brazil," Energy, Elsevier, vol. 100(C), pages 401-415.
    12. de Jong, Pieter & Dargaville, Roger & Silver, Jeremy & Utembe, Steven & Kiperstok, Asher & Torres, Ednildo Andrade, 2017. "Forecasting high proportions of wind energy supplying the Brazilian Northeast electricity grid," Applied Energy, Elsevier, vol. 195(C), pages 538-555.
    13. Jurasz, Jakub & Beluco, Alexandre & Canales, Fausto A., 2018. "The impact of complementarity on power supply reliability of small scale hybrid energy systems," Energy, Elsevier, vol. 161(C), pages 737-743.
    14. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).
    16. Karadöl, İsrafil & Yıldız, Ceyhun & Şekkeli, Mustafa, 2021. "Determining optimal spatial and temporal complementarity between wind and hydropower," Energy, Elsevier, vol. 230(C).
    17. Heidarizadeh, Mohammad & Ahmadian, Mohammad, 2019. "Capacity certificate mechanism: A step forward toward a market based generation capacity incentive," Energy, Elsevier, vol. 172(C), pages 45-56.
    18. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    19. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2019. "Climate change impacts and adaptation strategies for a hydro-dominated power system via stochastic optimization," Applied Energy, Elsevier, vol. 233, pages 584-598.
    20. Castaneda, Monica & Franco, Carlos J. & Dyner, Isaac, 2017. "Evaluating the effect of technology transformation on the electricity utility industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 341-351.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:131:y:2019:i:c:p:9-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.