IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v34y2012i2p536-541.html
   My bibliography  Save this article

The economics of storage, transmission and drought: integrating variable wind power into spatially separated electricity grids

Author

Listed:
  • Scorah, Hugh
  • Sopinka, Amy
  • van Kooten, G. Cornelis

Abstract

To mitigate the high variability of wind and make it a more viable renewable energy source, observers recommend greater integration of spatially-separated electrical grids, with high transmission lines linking load centers, scattered wind farms and hydro storage sites. In this study, we examine the economics of integrating large-scale wind energy into a grid characterized by fossil fuel thermal generation (Alberta) that is only weakly linked to one characterized by hydroelectric assets and the ability to store power behind hydro dams (British Columbia). We use a mathematical programming model to investigate the impact of increasing the capacity of the transmission link between the two disparate grids, which has not been done previously, and thereby shedding light on the issue of greater grid integration as a means of addressing intermittent renewable power. We find that, as wind capacity increases, costs of reducing CO2 emissions fall with increased transmission capacity between the grids, although this does not hold in all cases. Costs of reducing CO2 emissions are lowest during periods of drought. Over all scenarios, emission reduction costs vary between $20 and $60/t of CO2.

Suggested Citation

  • Scorah, Hugh & Sopinka, Amy & van Kooten, G. Cornelis, 2012. "The economics of storage, transmission and drought: integrating variable wind power into spatially separated electricity grids," Energy Economics, Elsevier, vol. 34(2), pages 536-541.
  • Handle: RePEc:eee:eneeco:v:34:y:2012:i:2:p:536-541
    DOI: 10.1016/j.eneco.2011.10.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098831100274X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2011.10.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ryan Prescott & G. Cornelis van Kooten & Hui Zhu, 2007. "The Potential for Wind Energy Meeting Electricity Needs on Vancouver Island," Energy & Environment, , vol. 18(6), pages 723-746, November.
    2. Benitez, Liliana E. & Benitez, Pablo C. & van Kooten, G. Cornelis, 2008. "The economics of wind power with energy storage," Energy Economics, Elsevier, vol. 30(4), pages 1973-1989, July.
    3. Wong, Linda, 2009. "Linking Matlab and GAMS: A Supplement," Working Papers 50783, University of Victoria, Resource Economics and Policy.
    4. Lund, Henrik, 2005. "Large-scale integration of wind power into different energy systems," Energy, Elsevier, vol. 30(13), pages 2402-2412.
    5. Linda Wong, 2009. "Linking Matlab and GAMS: A Supplement," Working Papers 2009-03, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    6. Denault, Michel & Dupuis, Debbie & Couture-Cardinal, Sébastien, 2009. "Complementarity of hydro and wind power: Improving the risk profile of energy inflows," Energy Policy, Elsevier, vol. 37(12), pages 5376-5384, December.
    7. Lennart Soder & Hannele Holttinen, 2008. "On methodology for modelling wind power impact on power systems," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 29(1/2), pages 181-198.
    8. Christoph Weber, 2005. "Uncertainty in the Electric Power Industry," International Series in Operations Research and Management Science, Springer, number 978-0-387-23048-1, December.
    9. G. Cornelis van Kooten, 2009. "Wind Power: The Economic Impact of Intermittency," Working Papers 2009-04, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    10. DeCarolis, Joseph F. & Keith, David W., 2006. "The economics of large-scale wind power in a carbon constrained world," Energy Policy, Elsevier, vol. 34(4), pages 395-410, March.
    11. Dua, Mohit & Manwell, James F. & McGowan, Jon G., 2008. "Utility scale wind turbines on a grid-connected island: A feasibility study," Renewable Energy, Elsevier, vol. 33(4), pages 712-719.
    12. Belanger, Camille & Gagnon, Luc, 2002. "Adding wind energy to hydropower," Energy Policy, Elsevier, vol. 30(14), pages 1279-1284, November.
    13. Ryan Prescott & G. Cornelis Van Kooten, 2009. "Economic costs of managing of an electricity grid with increasing wind power penetration," Climate Policy, Taylor & Francis Journals, vol. 9(2), pages 155-168, January.
    14. Maddaloni, Jesse D. & Rowe, Andrew M. & van Kooten, G. Cornelis, 2008. "Network constrained wind integration on Vancouver Island," Energy Policy, Elsevier, vol. 36(2), pages 591-602, February.
    15. van Kooten, G. Cornelis & Wong, Linda, 2010. "Economics of wind power when national grids are unreliable," Energy Policy, Elsevier, vol. 38(4), pages 1991-1998, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scorah, Hugh & Sopinka, Amy & van Kooten, G. Cornelis, 2010. "Managing Water Shortages in the Western Electricity Grids," Working Papers 59701, University of Victoria, Resource Economics and Policy.
    2. Ludig, Sylvie & Haller, Markus & Schmid, Eva & Bauer, Nico, 2011. "Fluctuating renewables in a long-term climate change mitigation strategy," Energy, Elsevier, vol. 36(11), pages 6674-6685.
    3. Benitez, Liliana E. & Benitez, Pablo C. & van Kooten, G. Cornelis, 2008. "The economics of wind power with energy storage," Energy Economics, Elsevier, vol. 30(4), pages 1973-1989, July.
    4. van Kooten, G. Cornelis & Wong, Linda, 2010. "Economics of wind power when national grids are unreliable," Energy Policy, Elsevier, vol. 38(4), pages 1991-1998, April.
    5. van Kooten, G. Cornelis, 2009. "Wind Power: The Economic Impact of Intermittency," Working Papers 54370, University of Victoria, Resource Economics and Policy.
    6. Denault, Michel & Dupuis, Debbie & Couture-Cardinal, Sébastien, 2009. "Complementarity of hydro and wind power: Improving the risk profile of energy inflows," Energy Policy, Elsevier, vol. 37(12), pages 5376-5384, December.
    7. van Kooten, G. Cornelis, 2015. "All you want to know about the Economics of Wind Power," Working Papers 241693, University of Victoria, Resource Economics and Policy.
    8. Timilsina, Govinda R. & Cornelis van Kooten, G. & Narbel, Patrick A., 2013. "Global wind power development: Economics and policies," Energy Policy, Elsevier, vol. 61(C), pages 642-652.
    9. Kern, Jordan D. & Patino-Echeverri, Dalia & Characklis, Gregory W., 2014. "An integrated reservoir-power system model for evaluating the impacts of wind integration on hydropower resources," Renewable Energy, Elsevier, vol. 71(C), pages 553-562.
    10. Mason, I.G. & Page, S.C. & Williamson, A.G., 2010. "A 100% renewable electricity generation system for New Zealand utilising hydro, wind, geothermal and biomass resources," Energy Policy, Elsevier, vol. 38(8), pages 3973-3984, August.
    11. van Kooten, G. Cornelis & Timilsina, Govinda R., 2009. "Wind power development : economics and policies," Policy Research Working Paper Series 4868, The World Bank.
    12. Jon Duan & G. Cornelis van Kooten & A. T. M. Hasibul Islam, 2023. "Calibration of Grid Models for Analyzing Energy Policies," Energies, MDPI, vol. 16(3), pages 1-21, January.
    13. Pejman Bahramian & Glenn P. Jenkins & Frank Milne, 2023. "Integration Of Wind Power into An Electricity System Using Pumped Storage: Economic Challenges and Stakeholder Impacts," Development Discussion Papers 2023-07, JDI Executive Programs.
    14. Bruninx, Kenneth & Madzharov, Darin & Delarue, Erik & D'haeseleer, William, 2013. "Impact of the German nuclear phase-out on Europe's electricity generation—A comprehensive study," Energy Policy, Elsevier, vol. 60(C), pages 251-261.
    15. Mauritzen, Johannes, 2012. "Dead Battery? Wind Power, the Spot Market, and Hydro Power Interaction in the Nordic Electricity Market," Working Paper Series 908, Research Institute of Industrial Economics.
    16. Luickx, Patrick J. & Delarue, Erik D. & D'haeseleer, William D., 2010. "Impact of large amounts of wind power on the operation of an electricity generation system: Belgian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2019-2028, September.
    17. Daniel T. Kaffine, Brannin J. McBee, and Jozef Lieskovsky, 2013. "Emissions Savings from Wind Power Generation in Texas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    18. Anderson Mitterhofer Iung & Fernando Luiz Cyrino Oliveira & André Luís Marques Marcato, 2023. "A Review on Modeling Variable Renewable Energy: Complementarity and Spatial–Temporal Dependence," Energies, MDPI, vol. 16(3), pages 1-24, January.
    19. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    20. Santos-Alamillos, F.J. & Pozo-Vázquez, D. & Ruiz-Arias, J.A. & Lara-Fanego, V. & Tovar-Pescador, J., 2014. "A methodology for evaluating the spatial variability of wind energy resources: Application to assess the potential contribution of wind energy to baseload power," Renewable Energy, Elsevier, vol. 69(C), pages 147-156.

    More about this item

    Keywords

    Wind power; Carbon costs; Electrical grids; Mathematical programming;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:34:y:2012:i:2:p:536-541. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.