IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp1019-1032.html
   My bibliography  Save this article

System design and operation for integrating variable renewable energy resources through a comprehensive characterization framework

Author

Listed:
  • McPherson, Madeleine
  • Harvey, L.D. Danny
  • Karney, Bryan

Abstract

The name itself – VRE for variable renewable energy – encapsulates the essential challenge: these energy sources are attractive precisely because they are renewable and yet problematic because they are variable. Thus, integrating large penetrations of VRE resources such as wind and solar into the electricity grid will necessitate flexible technologies and strategies. This paper establishes characterization metrics of both individual VRE resources and aggregated VRE resource sets with the goal of quantifying the integration requirements of various typologies. Integration requirements over multiple time scales are considered including hourly, weekly - seasonal, and inter-annual flexibility, as well as transmission expansion to connect neighboring wind and solar sources, and demand response mechanisms. The respective integration requirements are quantified through storage and demand response utilization rates, VRE curtailment rates, non-VRE ramping requirements, system costs, and GHG emissions. The results from VRE resources across South America clearly quantify the impact that integrating different VRE regimes has on the electricity system design and operation: not surprisingly integrating VREs on a grid with low non-VRE flexibility incurs the largest integration requirements, while smoothing net VRE production with out-of-phase resources is an effective integration strategy.

Suggested Citation

  • McPherson, Madeleine & Harvey, L.D. Danny & Karney, Bryan, 2017. "System design and operation for integrating variable renewable energy resources through a comprehensive characterization framework," Renewable Energy, Elsevier, vol. 113(C), pages 1019-1032.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:1019-1032
    DOI: 10.1016/j.renene.2017.06.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811730575X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.06.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kondziella, Hendrik & Bruckner, Thomas, 2016. "Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 10-22.
    2. Hirth, Lion & Ueckerdt, Falko & Edenhofer, Ottmar, 2015. "Integration costs revisited – An economic framework for wind and solar variability," Renewable Energy, Elsevier, vol. 74(C), pages 925-939.
    3. Shafiullah, G.M., 2016. "Hybrid renewable energy integration (HREI) system for subtropical climate in Central Queensland, Australia," Renewable Energy, Elsevier, vol. 96(PA), pages 1034-1053.
    4. Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
    5. Al-Nory, Malak & El-Beltagy, Mohamed, 2014. "An energy management approach for renewable energy integration with power generation and water desalination," Renewable Energy, Elsevier, vol. 72(C), pages 377-385.
    6. Paatero, Jukka V. & Lund, Peter D., 2007. "Effects of large-scale photovoltaic power integration on electricity distribution networks," Renewable Energy, Elsevier, vol. 32(2), pages 216-234.
    7. Göransson, Lisa & Johnsson, Filip, 2009. "Dispatch modeling of a regional power generation system – Integrating wind power," Renewable Energy, Elsevier, vol. 34(4), pages 1040-1049.
    8. Jaramillo, O.A. & Borja, M.A., 2004. "Wind speed analysis in La Ventosa, Mexico: a bimodal probability distribution case," Renewable Energy, Elsevier, vol. 29(10), pages 1613-1630.
    9. Frew, Bethany A. & Becker, Sarah & Dvorak, Michael J. & Andresen, Gorm B. & Jacobson, Mark Z., 2016. "Flexibility mechanisms and pathways to a highly renewable US electricity future," Energy, Elsevier, vol. 101(C), pages 65-78.
    10. Maddaloni, Jesse D. & Rowe, Andrew M. & van Kooten, G. Cornelis, 2009. "Wind integration into various generation mixtures," Renewable Energy, Elsevier, vol. 34(3), pages 807-814.
    11. Zoulias, E.I. & Lymberopoulos, N., 2007. "Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems," Renewable Energy, Elsevier, vol. 32(4), pages 680-696.
    12. Fant, Charles & Gunturu, Udaya Bhaskar, 2013. "Characterizing Wind Power Resource Reliability in Southern Africa," WIDER Working Paper Series 067, World Institute for Development Economic Research (UNU-WIDER).
    13. Boccard, Nicolas, 2009. "Capacity factor of wind power realized values vs. estimates," Energy Policy, Elsevier, vol. 37(7), pages 2679-2688, July.
    14. Valizadeh Haghi, H. & Tavakoli Bina, M. & Golkar, M.A. & Moghaddas-Tafreshi, S.M., 2010. "Using Copulas for analysis of large datasets in renewable distributed generation: PV and wind power integration in Iran," Renewable Energy, Elsevier, vol. 35(9), pages 1991-2000.
    15. Burgholzer, Bettina & Auer, Hans, 2016. "Cost/benefit analysis of transmission grid expansion to enable further integration of renewable electricity generation in Austria," Renewable Energy, Elsevier, vol. 97(C), pages 189-196.
    16. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    17. Lund, H., 2006. "Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply," Renewable Energy, Elsevier, vol. 31(4), pages 503-515.
    18. Kern, Jordan D. & Patino-Echeverri, Dalia & Characklis, Gregory W., 2014. "An integrated reservoir-power system model for evaluating the impacts of wind integration on hydropower resources," Renewable Energy, Elsevier, vol. 71(C), pages 553-562.
    19. Schmidt, Johannes & Cancella, Rafael & Pereira, Amaro O., 2016. "An optimal mix of solar PV, wind and hydro power for a low-carbon electricity supply in Brazil," Renewable Energy, Elsevier, vol. 85(C), pages 137-147.
    20. Deane, J.P. & Driscoll, Á. & Gallachóir, B.P Ó, 2015. "Quantifying the impacts of national renewable electricity ambitions using a North–West European electricity market model," Renewable Energy, Elsevier, vol. 80(C), pages 604-609.
    21. Charles Fant & Udaya Bhaskar Gunturu, 2013. "Characterizing Wind Power Resource Reliability in Southern Africa," WIDER Working Paper Series wp-2013-067, World Institute for Development Economic Research (UNU-WIDER).
    22. Moazzen, Iman & Robertson, Bryson & Wild, Peter & Rowe, Andrew & Buckham, Bradley, 2016. "Impacts of large-scale wave integration into a transmission-constrained grid," Renewable Energy, Elsevier, vol. 88(C), pages 408-417.
    23. Wolf-Peter Schill & Michael Pahle & Christian Gambardella, 2016. "On Start-up Costs of Thermal Power Plants in Markets with Increasing Shares of Fluctuating Renewables," Discussion Papers of DIW Berlin 1540, DIW Berlin, German Institute for Economic Research.
    24. Ramirez Camargo, Luis & Dorner, Wolfgang, 2016. "Comparison of satellite imagery based data, reanalysis data and statistical methods for mapping global solar radiation in the Lerma Valley (Salta, Argentina)," Renewable Energy, Elsevier, vol. 99(C), pages 57-68.
    25. Boland, John & Ridley, Barbara & Brown, Bruce, 2008. "Models of diffuse solar radiation," Renewable Energy, Elsevier, vol. 33(4), pages 575-584.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pearre, Nathaniel S. & Swan, Lukas G., 2018. "Spatial and geographic heterogeneity of wind turbine farms for temporally decoupled power output," Energy, Elsevier, vol. 145(C), pages 417-429.
    2. Ciupăgeanu, Dana-Alexandra & Lăzăroiu, Gheorghe & Barelli, Linda, 2019. "Wind energy integration: Variability analysis and power system impact assessment," Energy, Elsevier, vol. 185(C), pages 1183-1196.
    3. Baum, Zvi & Palatnik, Ruslana Rachel & Ayalon, Ofira & Elmakis, David & Frant, Shimon, 2019. "Harnessing households to mitigate renewables intermittency in the smart grid," Renewable Energy, Elsevier, vol. 132(C), pages 1216-1229.
    4. Ilaria Delponte & Corrado Schenone, 2020. "RES Implementation in Urban Areas: An Updated Overview," Sustainability, MDPI, vol. 12(1), pages 1-14, January.
    5. Yang, Lu & Xie, Pengli & Bi, Chongke & Zhang, Ronghui & Cai, Bowen & Shao, Xiaowei & Wang, Rongben, 2020. "Household power consumption pattern modeling through a single power sensor," Renewable Energy, Elsevier, vol. 155(C), pages 121-133.
    6. Zapata, Sebastian & Castaneda, Monica & Franco, Carlos Jaime & Dyner, Isaac, 2019. "Clean and secure power supply: A system dynamics based appraisal," Energy Policy, Elsevier, vol. 131(C), pages 9-21.
    7. Yu, Shiwei & Zhou, Shuangshuang & Zheng, Shuhong & Li, Zhenxi & Liu, Lancui, 2019. "Developing an optimal renewable electricity generation mix for China using a fuzzy multi-objective approach," Renewable Energy, Elsevier, vol. 139(C), pages 1086-1098.
    8. Ramirez Camargo, Luis & Valdes, Javier & Masip Macia, Yunesky & Dorner, Wolfgang, 2019. "Assessment of on-site steady electricity generation from hybrid renewable energy systems in Chile," Applied Energy, Elsevier, vol. 250(C), pages 1548-1558.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pearre, Nathaniel S. & Swan, Lukas G., 2018. "Spatial and geographic heterogeneity of wind turbine farms for temporally decoupled power output," Energy, Elsevier, vol. 145(C), pages 417-429.
    2. Nayak-Luke, Richard & Bañares-Alcántara, René & Collier, Sam, 2021. "Quantifying network flexibility requirements in terms of energy storage," Renewable Energy, Elsevier, vol. 167(C), pages 869-882.
    3. Cebulla, F. & Fichter, T., 2017. "Merit order or unit-commitment: How does thermal power plant modeling affect storage demand in energy system models?," Renewable Energy, Elsevier, vol. 105(C), pages 117-132.
    4. McPherson, Madeleine & Karney, Bryan, 2017. "A scenario based approach to designing electricity grids with high variable renewable energy penetrations in Ontario, Canada: Development and application of the SILVER model," Energy, Elsevier, vol. 138(C), pages 185-196.
    5. Lukas Wienholt & Ulf Philipp Müller & Julian Bartels, 2018. "Optimal Sizing and Spatial Allocation of Storage Units in a High-Resolution Power System Model," Energies, MDPI, vol. 11(12), pages 1-17, December.
    6. Zerrahn, Alexander & Schill, Wolf-Peter, 2017. "Long-run power storage requirements for high shares of renewables: review and a new model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1518-1534.
    7. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2020. "Quantifying power system flexibility provision," Applied Energy, Elsevier, vol. 279(C).
    8. McPherson, Madeleine & Tahseen, Samiha, 2018. "Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure," Energy, Elsevier, vol. 145(C), pages 856-870.
    9. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.
    10. Ghaib, Karim & Ben-Fares, Fatima-Zahrae, 2018. "Power-to-Methane: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 433-446.
    11. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    12. Gallo, A.B. & Simões-Moreira, J.R. & Costa, H.K.M. & Santos, M.M. & Moutinho dos Santos, E., 2016. "Energy storage in the energy transition context: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 800-822.
    13. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S. & Panapakidis, Ioannis P., 2017. "Impact of the penetration of renewables on flexibility needs," Energy Policy, Elsevier, vol. 109(C), pages 360-369.
    14. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    15. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    16. Virguez, Edgar & Wang, Xianxun & Patiño-Echeverri, Dalia, 2021. "Utility-scale photovoltaics and storage: Decarbonizing and reducing greenhouse gases abatement costs," Applied Energy, Elsevier, vol. 282(PA).
    17. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.
    18. Ramirez Camargo, Luis & Gruber, Katharina & Nitsch, Felix, 2019. "Assessing variables of regional reanalysis data sets relevant for modelling small-scale renewable energy systems," Renewable Energy, Elsevier, vol. 133(C), pages 1468-1478.
    19. Andrychowicz, Mateusz & Olek, Blazej & Przybylski, Jakub, 2017. "Review of the methods for evaluation of renewable energy sources penetration and ramping used in the Scenario Outlook and Adequacy Forecast 2015. Case study for Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 703-714.
    20. Herath, N. & Tyner, W.E., 2019. "Intended and unintended consequences of US renewable energy policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:1019-1032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.