IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3365-d187003.html
   My bibliography  Save this article

Optimal Sizing and Spatial Allocation of Storage Units in a High-Resolution Power System Model

Author

Listed:
  • Lukas Wienholt

    (Centre for Sustainable Energy Systems, Europa Universität Flensburg, Auf dem Campus 1, 24943 Flensburg, Germany)

  • Ulf Philipp Müller

    (Centre for Sustainable Energy Systems, Flensburg University of Applied Sciences, Kanzleistraße 91–93, 24943 Flensburg, Germany)

  • Julian Bartels

    (DLR Institute of Networked Energy Systems, Carl-von-Ossietzky-Straße 15, 26129 Oldenburg, Germany)

Abstract

The paradigm shift of large power systems to renewable and decentralized generation raises the question of future transmission and flexibility requirements. In this work, the German power system is brought to focus through a power transmission grid model in a high spatial resolution considering the high voltage (110 kV) level. The fundamental questions of location, type, and size of future storage units are addressed through a linear optimal power flow using today’s power grid capacities and a generation portfolio allowing a 66% generation share of renewable energy. The results of the optimization indicate that for reaching a renewable energy generation share of 53% with this set-up, a few central storage units with a relatively low overall additional storage capacity of around 1.6 GW are required. By adding a constraint of achieving a renewable generation share of at least 66%, storage capacities increase to almost eight times the original capacity. A comparison with the German grid development plan, which provided the basis for the power generation data, showed that despite the non-consideration of transmission grid extension, moderate additional storage capacities lead to a feasible power system. However, the achievement of a comparable renewable generation share provokes a significant investment in additional storage capacities.

Suggested Citation

  • Lukas Wienholt & Ulf Philipp Müller & Julian Bartels, 2018. "Optimal Sizing and Spatial Allocation of Storage Units in a High-Resolution Power System Model," Energies, MDPI, vol. 11(12), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3365-:d:187003
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3365/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3365/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bertsch, Joachim & Growitsch, Christian & Lorenczik, Stefan & Nagl, Stephan, 2016. "Flexibility in Europe's power sector — An additional requirement or an automatic complement?," Energy Economics, Elsevier, vol. 53(C), pages 118-131.
    2. Kondziella, Hendrik & Bruckner, Thomas, 2016. "Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 10-22.
    3. Schill, Wolf-Peter, 2014. "Residual load, renewable surplus generation and storage requirements in Germany," Energy Policy, Elsevier, vol. 73(C), pages 65-79.
    4. Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
    5. Schlachtberger, D.P. & Brown, T. & Schramm, S. & Greiner, M., 2017. "The benefits of cooperation in a highly renewable European electricity network," Energy, Elsevier, vol. 134(C), pages 469-481.
    6. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wilko Heitkoetter & Wided Medjroubi & Thomas Vogt & Carsten Agert, 2022. "Economic Assessment of Demand Response Using Coupled National and Regional Optimisation Models," Energies, MDPI, vol. 15(22), pages 1-25, November.
    2. Ulf Philipp Müller & Birgit Schachler & Malte Scharf & Wolf-Dieter Bunke & Stephan Günther & Julian Bartels & Guido Pleßmann, 2019. "Integrated Techno-Economic Power System Planning of Transmission and Distribution Grids," Energies, MDPI, vol. 12(11), pages 1-30, May.
    3. Wilko Heitkoetter & Wided Medjroubi & Thomas Vogt & Carsten Agert, 2019. "Comparison of Open Source Power Grid Models—Combining a Mathematical, Visual and Electrical Analysis in an Open Source Tool," Energies, MDPI, vol. 12(24), pages 1-15, December.
    4. Gracita Batista Rosas & Elizete Maria Lourenço & Djalma Mosqueira Falcão & Thelma Solange Piazza Fernandes, 2019. "An Expeditious Methodology to Assess the Effects of Intermittent Generation on Power Systems," Energies, MDPI, vol. 12(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    2. Kopiske, Jakob & Spieker, Sebastian & Tsatsaronis, George, 2017. "Value of power plant flexibility in power systems with high shares of variable renewables: A scenario outlook for Germany 2035," Energy, Elsevier, vol. 137(C), pages 823-833.
    3. Zerrahn, Alexander & Schill, Wolf-Peter, 2017. "Long-run power storage requirements for high shares of renewables: review and a new model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1518-1534.
    4. Cebulla, F. & Fichter, T., 2017. "Merit order or unit-commitment: How does thermal power plant modeling affect storage demand in energy system models?," Renewable Energy, Elsevier, vol. 105(C), pages 117-132.
    5. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    6. Brunner, Christoph & Deac, Gerda & Braun, Sebastian & Zöphel, Christoph, 2020. "The future need for flexibility and the impact of fluctuating renewable power generation," Renewable Energy, Elsevier, vol. 149(C), pages 1314-1324.
    7. Nayak-Luke, Richard & Bañares-Alcántara, René & Collier, Sam, 2021. "Quantifying network flexibility requirements in terms of energy storage," Renewable Energy, Elsevier, vol. 167(C), pages 869-882.
    8. Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," European Economic Review, Elsevier, vol. 99(C), pages 130-150.
    9. Teirilä, Juha, 2020. "The value of the nuclear power plant fleet in the German power market under the expansion of fluctuating renewables," Energy Policy, Elsevier, vol. 136(C).
    10. Haas, J. & Cebulla, F. & Cao, K. & Nowak, W. & Palma-Behnke, R. & Rahmann, C. & Mancarella, P., 2017. "Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 603-619.
    11. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2020. "Quantifying power system flexibility provision," Applied Energy, Elsevier, vol. 279(C).
    12. Martin Kittel & Wolf-Peter Schill, 2024. "Measuring the Dunkelflaute: How (not) to analyze variable renewable energy shortage," Papers 2402.06758, arXiv.org.
    13. Tom Brijs & Arne van Stiphout & Sauleh Siddiqui & Ronnie Belmans, 2016. "Evaluating the Role of Electricity Storage by Considering Short-Term Operation in Long-Term Planning," Discussion Papers of DIW Berlin 1624, DIW Berlin, German Institute for Economic Research.
    14. McPherson, Madeleine & Harvey, L.D. Danny & Karney, Bryan, 2017. "System design and operation for integrating variable renewable energy resources through a comprehensive characterization framework," Renewable Energy, Elsevier, vol. 113(C), pages 1019-1032.
    15. Karsten Neuhoff & Sophia Rüster & Sebastian Schwenen, 2015. "Power Market Design beyond 2020: Time to Revisit Key Elements?," Discussion Papers of DIW Berlin 1456, DIW Berlin, German Institute for Economic Research.
    16. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.
    17. Andrychowicz, Mateusz & Olek, Blazej & Przybylski, Jakub, 2017. "Review of the methods for evaluation of renewable energy sources penetration and ramping used in the Scenario Outlook and Adequacy Forecast 2015. Case study for Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 703-714.
    18. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    19. Coilín ÓhAiseadha & Gerré Quinn & Ronan Connolly & Michael Connolly & Willie Soon, 2020. "Energy and Climate Policy—An Evaluation of Global Climate Change Expenditure 2011–2018," Energies, MDPI, vol. 13(18), pages 1-49, September.
    20. Batas Bjelić, Ilija & Rajaković, Nikola & Krajačić, Goran & Duić, Neven, 2016. "Two methods for decreasing the flexibility gap in national energy systems," Energy, Elsevier, vol. 115(P3), pages 1701-1709.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3365-:d:187003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.