IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v149y2020icp1314-1324.html
   My bibliography  Save this article

The future need for flexibility and the impact of fluctuating renewable power generation

Author

Listed:
  • Brunner, Christoph
  • Deac, Gerda
  • Braun, Sebastian
  • Zöphel, Christoph

Abstract

A power system with 80% renewable energy sources (RES) requires significant provision of flexibility to balance the deviations of fluctuating solar and wind power. This paper focuses on how a smart mix of renewable generation technologies can reduce the demand for flexibility and therefore the overall system costs. To measure the demand for flexibility in systems with high RES generation, the term flexibility is defined and described using predictable indicators such as the difference between the highest and the lowest residual demand or the number of hours with negative residual load during a year. This definition is required to determine the optimal mix of RES installations. Optimization is performed for Germany based on the grid development plan of the transmission system operators. In contrast to most studies of the future energy system that foresee a further expansion of onshore wind, this paper shows that higher shares of offshore wind and, to some extent, photovoltaic are better suited to reducing the demand for flexibility and thus the cost of integrating fluctuating RES into the system.

Suggested Citation

  • Brunner, Christoph & Deac, Gerda & Braun, Sebastian & Zöphel, Christoph, 2020. "The future need for flexibility and the impact of fluctuating renewable power generation," Renewable Energy, Elsevier, vol. 149(C), pages 1314-1324.
  • Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:1314-1324
    DOI: 10.1016/j.renene.2019.10.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811931626X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.10.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Papaefthymiou, Georgios & Haesen, Edwin & Sach, Thobias, 2018. "Power System Flexibility Tracker: Indicators to track flexibility progress towards high-RES systems," Renewable Energy, Elsevier, vol. 127(C), pages 1026-1035.
    2. Child, Michael & Kemfert, Claudia & Bogdanov, Dmitrii & Breyer, Christian, 2019. "Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 139, pages 80-101.
    3. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    4. Saarinen, Linn & Dahlbäck, Niklas & Lundin, Urban, 2015. "Power system flexibility need induced by wind and solar power intermittency on time scales of 1–14 days," Renewable Energy, Elsevier, vol. 83(C), pages 339-344.
    5. Schill, Wolf-Peter, 2014. "Residual Load, Renewable Surplus Generation and Storage Requirements in Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 73, pages 65-79.
    6. Bertsch, Joachim & Growitsch, Christian & Lorenczik, Stefan & Nagl, Stephan, 2016. "Flexibility in Europe's power sector — An additional requirement or an automatic complement?," Energy Economics, Elsevier, vol. 53(C), pages 118-131.
    7. Gils, Hans Christian & Scholz, Yvonne & Pregger, Thomas & Luca de Tena, Diego & Heide, Dominik, 2017. "Integrated modelling of variable renewable energy-based power supply in Europe," Energy, Elsevier, vol. 123(C), pages 173-188.
    8. Denholm, Paul & Hand, Maureen, 2011. "Grid flexibility and storage required to achieve very high penetration of variable renewable electricity," Energy Policy, Elsevier, vol. 39(3), pages 1817-1830, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Derakhtenjani, Ali Saberi & Athienitis, Andreas K., 2021. "A frequency domain transfer function methodology for thermal characterization and design for energy flexibility of zones with radiant systems," Renewable Energy, Elsevier, vol. 163(C), pages 1033-1045.
    2. Zeng, Bo & Luo, Yangfan, 2022. "Potential of harnessing operational flexibility from public transport hubs to improve reliability and economic performance of urban multi-energy systems: A holistic assessment framework," Applied Energy, Elsevier, vol. 322(C).
    3. Yu, Jianxi & Liu, Pei & Li, Zheng, 2020. "Hybrid modelling and digital twin development of a steam turbine control stage for online performance monitoring," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Bernath, Christiane & Deac, Gerda & Sensfuß, Frank, 2021. "Impact of sector coupling on the market value of renewable energies – A model-based scenario analysis," Applied Energy, Elsevier, vol. 281(C).
    5. Ali Saberi Derakhtenjani & Andreas K. Athienitis, 2021. "Model Predictive Control Strategies to Activate the Energy Flexibility for Zones with Hydronic Radiant Systems," Energies, MDPI, vol. 14(4), pages 1-19, February.
    6. Mehigan, L. & Ó Gallachóir, Brian & Deane, Paul, 2022. "Batteries and interconnection: Competing or complementary roles in the decarbonisation of the European power system?," Renewable Energy, Elsevier, vol. 196(C), pages 1229-1240.
    7. Rinaldi, Arthur & Yilmaz, Selin & Patel, Martin K. & Parra, David, 2022. "What adds more flexibility? An energy system analysis of storage, demand-side response, heating electrification, and distribution reinforcement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Frank Pierie & Christian E. J. van Someren & Sandór N. M. Kruse & Gideon A. H. Laugs & René M. J. Benders & Henri C. Moll, 2021. "Local Balancing of the Electricity Grid in a Renewable Municipality; Analyzing the Effectiveness and Cost of Decentralized Load Balancing Looking at Multiple Combinations of Technologies," Energies, MDPI, vol. 14(16), pages 1-35, August.
    9. Roy, Sanjoy, 2021. "Analytical estimates of short duration mean power output and variability for deepwater wave power generation," Energy, Elsevier, vol. 230(C).
    10. Dahash, Abdulrahman & Ochs, Fabian & Tosatto, Alice, 2021. "Techno-economic and exergy analysis of tank and pit thermal energy storage for renewables district heating systems," Renewable Energy, Elsevier, vol. 180(C), pages 1358-1379.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kopiske, Jakob & Spieker, Sebastian & Tsatsaronis, George, 2017. "Value of power plant flexibility in power systems with high shares of variable renewables: A scenario outlook for Germany 2035," Energy, Elsevier, vol. 137(C), pages 823-833.
    2. Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," European Economic Review, Elsevier, vol. 99(C), pages 130-150.
    3. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    4. Bernath, Christiane & Deac, Gerda & Sensfuß, Frank, 2021. "Impact of sector coupling on the market value of renewable energies – A model-based scenario analysis," Applied Energy, Elsevier, vol. 281(C).
    5. Lukas Wienholt & Ulf Philipp Müller & Julian Bartels, 2018. "Optimal Sizing and Spatial Allocation of Storage Units in a High-Resolution Power System Model," Energies, MDPI, vol. 11(12), pages 1-17, December.
    6. Andrychowicz, Mateusz & Olek, Blazej & Przybylski, Jakub, 2017. "Review of the methods for evaluation of renewable energy sources penetration and ramping used in the Scenario Outlook and Adequacy Forecast 2015. Case study for Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 703-714.
    7. Batas Bjelić, Ilija & Rajaković, Nikola & Krajačić, Goran & Duić, Neven, 2016. "Two methods for decreasing the flexibility gap in national energy systems," Energy, Elsevier, vol. 115(P3), pages 1701-1709.
    8. Teirilä, Juha, 2020. "The value of the nuclear power plant fleet in the German power market under the expansion of fluctuating renewables," Energy Policy, Elsevier, vol. 136(C).
    9. Haas, J. & Cebulla, F. & Cao, K. & Nowak, W. & Palma-Behnke, R. & Rahmann, C. & Mancarella, P., 2017. "Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 603-619.
    10. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2020. "Quantifying power system flexibility provision," Applied Energy, Elsevier, vol. 279(C).
    11. Cebulla, F. & Fichter, T., 2017. "Merit order or unit-commitment: How does thermal power plant modeling affect storage demand in energy system models?," Renewable Energy, Elsevier, vol. 105(C), pages 117-132.
    12. McPherson, Madeleine & Tahseen, Samiha, 2018. "Deploying storage assets to facilitate variable renewable energy integration: The impacts of grid flexibility, renewable penetration, and market structure," Energy, Elsevier, vol. 145(C), pages 856-870.
    13. Kondziella, Hendrik & Bruckner, Thomas, 2016. "Flexibility requirements of renewable energy based electricity systems – a review of research results and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 10-22.
    14. Laurent Pagnier & Philippe Jacquod, 2017. "How fast can one overcome the paradox of the energy transition? A physico-economic model for the European power grid," Papers 1706.00330, arXiv.org, revised Jun 2018.
    15. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    16. Guerra, K. & Gutiérrez-Alvarez, R. & Guerra, Omar J. & Haro, P., 2023. "Opportunities for low-carbon generation and storage technologies to decarbonise the future power system," Applied Energy, Elsevier, vol. 336(C).
    17. Guerra, K. & Haro, P. & Gutiérrez, R.E. & Gómez-Barea, A., 2022. "Facing the high share of variable renewable energy in the power system: Flexibility and stability requirements," Applied Energy, Elsevier, vol. 310(C).
    18. Stinner, Sebastian & Huchtemann, Kristian & Müller, Dirk, 2016. "Quantifying the operational flexibility of building energy systems with thermal energy storages," Applied Energy, Elsevier, vol. 181(C), pages 140-154.
    19. Heffron, Raphael J. & Körner, Marc-Fabian & Schöpf, Michael & Wagner, Jonathan & Weibelzahl, Martin, 2021. "The role of flexibility in the light of the COVID-19 pandemic and beyond: Contributing to a sustainable and resilient energy future in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    20. Strübing, Dietmar & Moeller, Andreas B. & Mößnang, Bettina & Lebuhn, Michael & Drewes, Jörg E. & Koch, Konrad, 2018. "Anaerobic thermophilic trickle bed reactor as a promising technology for flexible and demand-oriented H2/CO2 biomethanation," Applied Energy, Elsevier, vol. 232(C), pages 543-554.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:149:y:2020:i:c:p:1314-1324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.