IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v65y2017icp64-74.html
   My bibliography  Save this article

An equilibrium pricing model for wind power futures

Author

Listed:
  • Gersema, Gerke
  • Wozabal, David

Abstract

Generation from wind power plants is intermittent and affects profits of wind power generators and conventional generators alike. Currently, generators have limited options for transferring the resulting wind-related volume risks. The European Energy Exchange (EEX) recently introduced exchange-traded wind power futures to address this market imperfection. We propose a stylized equilibrium pricing model featuring two representative agents and analyze equilibrium prices as well as the mechanics behind risk premia for wind power futures. We calibrate and simulate stochastic models for wind power generation, power prices, electricity demand, as well as other relevant sources of uncertainty and use the resulting scenarios to conduct a case study for the German market; analyzing prices, hedging effectiveness, and risk premia. Our main result suggests that wind generators are willing to pay an insurance premium to conventional generators to reduce their risks. We conduct a thorough sensitivity analysis to test the influence of model parameters and find that our results on risk premia hold for a broad range of reasonable inputs.

Suggested Citation

  • Gersema, Gerke & Wozabal, David, 2017. "An equilibrium pricing model for wind power futures," Energy Economics, Elsevier, vol. 65(C), pages 64-74.
  • Handle: RePEc:eee:eneeco:v:65:y:2017:i:c:p:64-74
    DOI: 10.1016/j.eneco.2017.04.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988317301433
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2017.04.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Markus Burger & Bernhard Klar & Alfred Muller & Gero Schindlmayr, 2004. "A spot market model for pricing derivatives in electricity markets," Quantitative Finance, Taylor & Francis Journals, vol. 4(1), pages 109-122.
    2. James B. Bushnell & Erin T. Mansur & Celeste Saravia, 2008. "Vertical Arrangements, Market Structure, and Competition: An Analysis of Restructured US Electricity Markets," American Economic Review, American Economic Association, vol. 98(1), pages 237-266, March.
    3. A.M. Fogheri, 2015. "Energy Efficiency in Public Buildings," Rivista economica del Mezzogiorno, Società editrice il Mulino, issue 3-4, pages 763-784.
    4. Hendrik Bessembinder & Michael L. Lemmon, 2002. "Equilibrium Pricing and Optimal Hedging in Electricity Forward Markets," Journal of Finance, American Finance Association, vol. 57(3), pages 1347-1382, June.
    5. Renqian, Suonan & Ge, Yunpeng & Huo, Bofeng & Ji, Shengjin & Diao, Qiangqiang, 2015. "On the tree with diameter 4 and maximal energy," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 364-374.
    6. Weron, Rafal, 2008. "Market price of risk implied by Asian-style electricity options and futures," Energy Economics, Elsevier, vol. 30(3), pages 1098-1115, May.
    7. Kolos, Sergey P. & Ronn, Ehud I., 2008. "Estimating the commodity market price of risk for energy prices," Energy Economics, Elsevier, vol. 30(2), pages 621-641, March.
    8. Markowitz, Harry, 2014. "Mean–variance approximations to expected utility," European Journal of Operational Research, Elsevier, vol. 234(2), pages 346-355.
    9. Allaz, Blaise, 1992. "Oligopoly, uncertainty and strategic forward transactions," International Journal of Industrial Organization, Elsevier, vol. 10(2), pages 297-308, June.
    10. Christian Redl & Derek Bunn, 2013. "Determinants of the premium in forward contracts," Journal of Regulatory Economics, Springer, vol. 43(1), pages 90-111, January.
    11. Das, Kinkar Ch. & Mojallal, Seyed Ahmad & Gutman, Ivan, 2015. "On Laplacian energy in terms of graph invariants," Applied Mathematics and Computation, Elsevier, vol. 268(C), pages 83-92.
    12. James Bushnell, 2007. "Oligopoly equilibria in electricity contract markets," Journal of Regulatory Economics, Springer, vol. 32(3), pages 225-245, December.
    13. Fleten, Stein-Erik & Lemming, Jacob, 2003. "Constructing forward price curves in electricity markets," Energy Economics, Elsevier, vol. 25(5), pages 409-424, September.
    14. Huisman, Ronald & Kilic, Mehtap, 2012. "Electricity Futures Prices: Indirect Storability, Expectations, and Risk Premiums," Energy Economics, Elsevier, vol. 34(4), pages 892-898.
    15. Francisco Pérez-González & Hayong Yun, 2013. "Risk Management and Firm Value: Evidence from Weather Derivatives," Journal of Finance, American Finance Association, vol. 68(5), pages 2143-2176, October.
    16. Benth, Fred Espen & Saltyte Benth, Jurate, 2009. "Dynamic pricing of wind futures," Energy Economics, Elsevier, vol. 31(1), pages 16-24, January.
    17. Blaise Allaz, 1992. "Oligopoly, uncertainty and strategic forward transactions," Post-Print hal-00511812, HAL.
    18. Pineda, S. & Conejo, A.J., 2012. "Managing the financial risks of electricity producers using options," Energy Economics, Elsevier, vol. 34(6), pages 2216-2227.
    19. Blaise Allaz & Jean-Luc Vila, 1993. "Cournot Competition, Forward Markets and Efficiency," Post-Print hal-00511806, HAL.
    20. Chamberlain, Gary, 1983. "A characterization of the distributions that imply mean--Variance utility functions," Journal of Economic Theory, Elsevier, vol. 29(1), pages 185-201, February.
    21. Francis A. Longstaff & Ashley W. Wang, 2004. "Electricity Forward Prices: A High-Frequency Empirical Analysis," Journal of Finance, American Finance Association, vol. 59(4), pages 1877-1900, August.
    22. A. Alexandridis & A. Zapranis, 2013. "Wind Derivatives: Modeling and Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 41(3), pages 299-326, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Július Bemš & Caner Aydin, 2022. "Introduction to weather derivatives," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(3), May.
    2. Awdesch Melzer & Wolfgang K. Härdle & Brenda López Cabrera, 2017. "Pricing Green Financial Products," SFB 649 Discussion Papers SFB649DP2017-020, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    3. Thomaidis, Nikolaos S. & Christodoulou, Theodoros & Santos-Alamillos, Francisco J., 2023. "Handling the risk dimensions of wind energy generation," Applied Energy, Elsevier, vol. 339(C).
    4. Kanamura, Takashi & Homann, Lasse & Prokopczuk, Marcel, 2021. "Pricing analysis of wind power derivatives for renewable energy risk management," Applied Energy, Elsevier, vol. 304(C).
    5. Yuji Yamada & Takuji Matsumoto, 2021. "Going for Derivatives or Forwards? Minimizing Cashflow Fluctuations of Electricity Transactions on Power Markets," Energies, MDPI, vol. 14(21), pages 1-28, November.
    6. Wolfgang Karl Härdle & Brenda López Cabrera & Awdesch Melzer, 2021. "Pricing wind power futures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1083-1102, August.
    7. Schiochet Pinto, Luane & Pinheiro Neto, Daywes & de Leles Ferreira Filho, Anésio & Domingues, Elder Geraldo, 2020. "An alternative methodology for analyzing the risk and sensitivity of the economic viability for generating electrical energy with biogas from the anaerobic bio-digestion of vinasse," Renewable Energy, Elsevier, vol. 155(C), pages 1401-1410.
    8. Takuji Matsumoto & Yuji Yamada, 2023. "Improving the Efficiency of Hedge Trading Using Higher-Order Standardized Weather Derivatives for Wind Power," Energies, MDPI, vol. 16(7), pages 1-22, March.
    9. Fred Espen Benth & Anca Pircalabu, 2018. "A non-Gaussian Ornstein–Uhlenbeck model for pricing wind power futures," Applied Mathematical Finance, Taylor & Francis Journals, vol. 25(1), pages 36-65, January.
    10. Zhang, Lingge & Yang, Dong & Wu, Shining & Luo, Meifeng, 2023. "Revisiting the pricing benchmarks for Asian LNG — An equilibrium analysis," Energy, Elsevier, vol. 262(PA).
    11. Yeny E. Rodríguez & Miguel A. Pérez-Uribe & Javier Contreras, 2021. "Wind Put Barrier Options Pricing Based on the Nordix Index," Energies, MDPI, vol. 14(4), pages 1-14, February.
    12. Christensen, Troels Sønderby & Pircalabu, Anca & Høg, Esben, 2019. "A seasonal copula mixture for hedging the clean spark spread with wind power futures," Energy Economics, Elsevier, vol. 78(C), pages 64-80.
    13. Devine, Mel & Russo, Marianna & Cuffe, Paul, 2019. "Blockchain electricity trading using tokenised power delivery contracts," Papers WP649, Economic and Social Research Institute (ESRI).
    14. Yuji Yamada & Takuji Matsumoto, 2023. "Construction of Mixed Derivatives Strategy for Wind Power Producers," Energies, MDPI, vol. 16(9), pages 1-26, April.
    15. Markus Hess, 2021. "A new approach to wind power futures pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1235-1252, December.
    16. Fugui Dong & Xiaohui Ding & Lei Shi, 2019. "Wind Power Pricing Game Strategy under the China’s Market Trading Mechanism," Energies, MDPI, vol. 12(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Redl & Derek Bunn, 2013. "Determinants of the premium in forward contracts," Journal of Regulatory Economics, Springer, vol. 43(1), pages 90-111, January.
    2. Heikki Peura & Derek W. Bunn, 2021. "Renewable Power and Electricity Prices: The Impact of Forward Markets," Management Science, INFORMS, vol. 67(8), pages 4772-4788, August.
    3. Bunn, Derek W. & Chen, Dipeng, 2013. "The forward premium in electricity futures," Journal of Empirical Finance, Elsevier, vol. 23(C), pages 173-186.
    4. George Daskalakis, Lazaros Symeonidis, Raphael N. Markellos, 2015. "Electricity futures prices in an emissions constrained economy: Evidence from European power markets," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    5. Weron, Rafał & Zator, Michał, 2014. "Revisiting the relationship between spot and futures prices in the Nord Pool electricity market," Energy Economics, Elsevier, vol. 44(C), pages 178-190.
    6. Baldursson , Fridrik M. & von der Fehr, Nils-Henrik, 2007. "Vertical Integration and Long-Term Contracts in Risky Markets," Memorandum 01/2007, Oslo University, Department of Economics.
    7. Spodniak, Petr & Collan, Mikael, 2018. "Forward risk premia in long-term transmission rights: The case of electricity price area differentials (EPAD) in the Nordic electricity market," Utilities Policy, Elsevier, vol. 50(C), pages 194-206.
    8. Mehtap Kilic & Ronald Huisman, 2010. "Is Power Production Flexibility a Substitute for Storability? Evidence from Electricity Futures Prices," Tinbergen Institute Discussion Papers 10-070/2, Tinbergen Institute.
    9. Remco van Eijkel & Jose Luis Moraga, 2010. "Do Firms sell forward for Strategic Reasons? An Application to the Wholesale Market for Natural Gas," Tinbergen Institute Discussion Papers 10-058/1, Tinbergen Institute.
    10. Furió, Dolores & Meneu, Vicente, 2010. "Expectations and forward risk premium in the Spanish deregulated power market," Energy Policy, Elsevier, vol. 38(2), pages 784-793, February.
    11. Haim Mendelson & Tunay I. Tunca, 2007. "Strategic Spot Trading in Supply Chains," Management Science, INFORMS, vol. 53(5), pages 742-759, May.
    12. Pietz, Matthäus, 2009. "Risk premia in electricity wholesale spot markets: empirical evidence from Germany," CEFS Working Paper Series 2009-11, Technische Universität München (TUM), Center for Entrepreneurial and Financial Studies (CEFS).
    13. Ferreira, José Luis & Kujal, Praveen & Rassenti, Stephen, 2009. "The strategic motive to sell forward: experimental evidence," UC3M Working papers. Economics we092616, Universidad Carlos III de Madrid. Departamento de Economía.
    14. de Bragança, Gabriel Godofredo Fiuza & Daglish, Toby, 2017. "Investing in vertical integration: electricity retail market participation," Energy Economics, Elsevier, vol. 67(C), pages 355-365.
    15. Zhang, Yue & Farnoosh, Arash, 2019. "Analyzing the dynamic impact of electricity futures on revenue and risk of renewable energy in China," Energy Policy, Elsevier, vol. 132(C), pages 678-690.
    16. Algieri, Bernardina & Leccadito, Arturo & Tunaru, Diana, 2021. "Risk premia in electricity derivatives markets," Energy Economics, Elsevier, vol. 100(C).
    17. Javad Khazaei & Golbon Zakeri & Shmuel S. Oren, 2017. "Single and Multisettlement Approaches to Market Clearing Under Demand Uncertainty," Operations Research, INFORMS, vol. 65(5), pages 1147-1164, October.
    18. Paolo Falbo & Carlos Ruiz, 2021. "Joint optimization of sales-mix and generation plan for a large electricity producer," Papers 2110.02016, arXiv.org.
    19. Abate, Arega Getaneh & Riccardi, Rossana & Ruiz, Carlos, 2022. "Contract design in electricity markets with high penetration of renewables: A two-stage approach," Omega, Elsevier, vol. 111(C).
    20. Fleten, Stein-Erik & Hagen, Liv Aune & Nygård, Maria Tandberg & Smith-Sivertsen, Ragnhild & Sollie, Johan M., 2015. "The overnight risk premium in electricity forward contracts," Energy Economics, Elsevier, vol. 49(C), pages 293-300.

    More about this item

    Keywords

    Weather derivatives; Power futures; Market integration of renewables; Variable renewables; Wind power; Intermittency;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:65:y:2017:i:c:p:64-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.