IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v47y2015icp142-153.html
   My bibliography  Save this article

A spot-forward model for electricity prices with regime shifts

Author

Listed:
  • Paraschiv, Florentina
  • Fleten, Stein-Erik
  • Schürle, Michael

Abstract

We propose a novel regime-switching approach for electricity prices in which simulated and forecasted prices are consistent with currently observed forward prices. Additionally, the model is able to reproduce spikes and negative prices. We distinguish between a base regime as well as upper and lower spike regimes. We derive hourly price forward curves for EEX Phelix, and together with historical hourly spot prices, historical hourly price forward curves are the basis for model calibration. The model can be used for simulation and forecasting of electricity spot prices over short- and medium-term horizons. Tests imply that it shows a better performance than classical time series approaches.

Suggested Citation

  • Paraschiv, Florentina & Fleten, Stein-Erik & Schürle, Michael, 2015. "A spot-forward model for electricity prices with regime shifts," Energy Economics, Elsevier, vol. 47(C), pages 142-153.
  • Handle: RePEc:eee:eneeco:v:47:y:2015:i:c:p:142-153
    DOI: 10.1016/j.eneco.2014.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988314002722
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2014.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Misiorek Adam & Trueck Stefan & Weron Rafal, 2006. "Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-36, September.
    2. Weron, R & Bierbrauer, M & Trück, S, 2004. "Modeling electricity prices: jump diffusion and regime switching," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(1), pages 39-48.
    3. Kovacevic, Raimund M. & Paraschiv, Florentina, 2012. "Medium-term Planning for Thermal Electricity Production," Working Papers on Finance 1220, University of St. Gallen, School of Finance.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Arvesen, Ø. & Medbø, V. & Fleten, S.-E. & Tomasgard, A. & Westgaard, S., 2013. "Linepack storage valuation under price uncertainty," Energy, Elsevier, vol. 52(C), pages 155-164.
    6. Conejo, Antonio J. & Contreras, Javier & Espinola, Rosa & Plazas, Miguel A., 2005. "Forecasting electricity prices for a day-ahead pool-based electric energy market," International Journal of Forecasting, Elsevier, vol. 21(3), pages 435-462.
    7. Rafal Weron & Adam Misiorek, 2005. "Forecasting Spot Electricity Prices With Time Series Models," Econometrics 0504001, University Library of Munich, Germany.
    8. Keles, Dogan & Möst, Dominik & Fichtner, Wolf, 2011. "The development of the German energy market until 2030--A critical survey of selected scenarios," Energy Policy, Elsevier, vol. 39(2), pages 812-825, February.
    9. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    10. Fleten, Stein-Erik & Lemming, Jacob, 2003. "Constructing forward price curves in electricity markets," Energy Economics, Elsevier, vol. 25(5), pages 409-424, September.
    11. Christoph Weber, 2005. "Uncertainty in the Electric Power Industry," International Series in Operations Research and Management Science, Springer, number 978-0-387-23048-1, December.
    12. Rafał Weron, 2009. "Heavy-tails and regime-switching in electricity prices," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 69(3), pages 457-473, July.
    13. Pietz, Matthäus, 2009. "Risk premia in electricity wholesale spot markets: empirical evidence from Germany," CEFS Working Paper Series 2009-11, Technische Universität München (TUM), Center for Entrepreneurial and Financial Studies (CEFS).
    14. Adam Misiorek & Rafal Weron, 2006. "Interval forecasting of spot electricity prices," HSC Research Reports HSC/06/05, Hugo Steinhaus Center, Wroclaw University of Technology.
    15. Paraschiv, Florentina & Erni, David & Pietsch, Ralf, 2014. "The impact of renewable energies on EEX day-ahead electricity prices," Energy Policy, Elsevier, vol. 73(C), pages 196-210.
    16. Lise, Wietze & Linderhof, Vincent & Kuik, Onno & Kemfert, Claudia & Ostling, Robert & Heinzow, Thomas, 2006. "A game theoretic model of the Northwestern European electricity market--market power and the environment," Energy Policy, Elsevier, vol. 34(15), pages 2123-2136, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    2. Shadi Tehrani & Jesús Juan & Eduardo Caro, 2022. "Electricity Spot Price Modeling and Forecasting in European Markets," Energies, MDPI, vol. 15(16), pages 1-23, August.
    3. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601.
    4. Lars Ivar Hagfors & Hilde Hørthe Kamperud & Florentina Paraschiv & Marcel Prokopczuk & Alma Sator & Sjur Westgaard, 2016. "Prediction of extreme price occurrences in the German day-ahead electricity market," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1929-1948, December.
    5. Rafal Weron & Adam Misiorek, 2006. "Short-term electricity price forecasting with time series models: A review and evaluation," HSC Research Reports HSC/06/01, Hugo Steinhaus Center, Wroclaw University of Technology.
    6. Misiorek Adam & Trueck Stefan & Weron Rafal, 2006. "Point and Interval Forecasting of Spot Electricity Prices: Linear vs. Non-Linear Time Series Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-36, September.
    7. Paraschiv, Florentina, 2013. "Price Dynamics in Electricity Markets," Working Papers on Finance 1314, University of St. Gallen, School of Finance.
    8. Keles, Dogan & Genoese, Massimo & Möst, Dominik & Fichtner, Wolf, 2012. "Comparison of extended mean-reversion and time series models for electricity spot price simulation considering negative prices," Energy Economics, Elsevier, vol. 34(4), pages 1012-1032.
    9. Christian Huurman & Francesco Ravazzolo & Chen Zhou, 2007. "The Power of Weather: Some Empirical Evidence on Predicting Day-ahead Power Prices through Day-ahead Weather Forecasts," Tinbergen Institute Discussion Papers 07-036/4, Tinbergen Institute.
    10. Pape, Christian & Hagemann, Simon & Weber, Christoph, 2016. "Are fundamentals enough? Explaining price variations in the German day-ahead and intraday power market," Energy Economics, Elsevier, vol. 54(C), pages 376-387.
    11. Keles, Dogan & Scelle, Jonathan & Paraschiv, Florentina & Fichtner, Wolf, 2016. "Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks," Applied Energy, Elsevier, vol. 162(C), pages 218-230.
    12. Palacio, Sebastián M., 2020. "Predicting collusive patterns in a liberalized electricity market with mandatory auctions of forward contracts," Energy Policy, Elsevier, vol. 139(C).
    13. Karakatsani Nektaria V & Bunn Derek W., 2010. "Fundamental and Behavioural Drivers of Electricity Price Volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-42, September.
    14. Christian Huurman & Francesco Ravazzolo & Chen Zhou, 2008. "The power of weather. Some empirical evidence on predicting day-ahead power prices through weather forecasts," Working Paper 2008/08, Norges Bank.
    15. Gianfreda, Angelica & Ravazzolo, Francesco & Rossini, Luca, 2020. "Comparing the forecasting performances of linear models for electricity prices with high RES penetration," International Journal of Forecasting, Elsevier, vol. 36(3), pages 974-986.
    16. Weron, Rafal, 2009. "Forecasting wholesale electricity prices: A review of time series models," MPRA Paper 21299, University Library of Munich, Germany.
    17. Segnon Mawuli & Wilfling Bernd & Lau Chi Keung & Gupta Rangan, 2022. "Are multifractal processes suited to forecasting electricity price volatility? Evidence from Australian intraday data," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(1), pages 73-98, February.
    18. Lisi, Francesco & Nan, Fany, 2014. "Component estimation for electricity prices: Procedures and comparisons," Energy Economics, Elsevier, vol. 44(C), pages 143-159.
    19. Janczura, Joanna & Trück, Stefan & Weron, Rafał & Wolff, Rodney C., 2013. "Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling," Energy Economics, Elsevier, vol. 38(C), pages 96-110.
    20. Brusaferri, Alessandro & Matteucci, Matteo & Portolani, Pietro & Vitali, Andrea, 2019. "Bayesian deep learning based method for probabilistic forecast of day-ahead electricity prices," Applied Energy, Elsevier, vol. 250(C), pages 1158-1175.

    More about this item

    Keywords

    Electricity prices; Regime-switching model; Negative prices; Spikes; Price forward curves;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:47:y:2015:i:c:p:142-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.