Advanced Search
MyIDEAS: Login to save this article or follow this journal

Analyzing and forecasting volatility spillovers, asymmetries and hedging in major oil markets

Contents:

Author Info

  • Chang, Chia-Lin
  • McAleer, Michael
  • Tansuchat, Roengchai

Abstract

Crude oil price volatility has been analyzed extensively for organized spot, forward and futures markets for well over a decade, and is crucial for forecasting volatility and Value-at-Risk (VaR). There are four major benchmarks in the international oil market, namely West Texas Intermediate (USA), Brent (North Sea), Dubai/Oman (Middle East), and Tapis (Asia-Pacific), which are likely to be highly correlated. This paper analyses the volatility spillover and asymmetric effects across and within the four markets, using three multivariate GARCH models, namely the constant conditional correlation (CCC), vector ARMA-GARCH (VARMA-GARCH) and vector ARMA-asymmetric GARCH (VARMA-AGARCH) models. A rolling window approach is used to forecast the 1-day ahead conditional correlations. The paper presents evidence of volatility spillovers and asymmetric effects on the conditional variances for most pairs of series. In addition, the forecast conditional correlations between pairs of crude oil returns have both positive and negative trends. Moreover, the optimal hedge ratios and optimal portfolio weights of crude oil across different assets and market portfolios are evaluated in order to provide important policy implications for risk management in crude oil markets.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V7G-5041299-1/2/edcbc52a0375455b3714387c12259bb4
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Energy Economics.

Volume (Year): 32 (2010)
Issue (Month): 6 (November)
Pages: 1445-1455

as in new window
Handle: RePEc:eee:eneeco:v:32:y:2010:i:6:p:1445-1455

Contact details of provider:
Web page: http://www.elsevier.com/locate/eneco

Related research

Keywords: Volatility spillovers Multivariate GARCH Conditional correlation Asymmetries Hedging;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Massimiliano Caporin & Michael McAleer, 2012. "Do We Really Need Both Bekk And Dcc? A Tale Of Two Multivariate Garch Models," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 736-751, 09.
  2. Chia-Lin Chang & Michael McAleer & Roengchai Tansuchat, 2009. "Modelling Conditional Correlations for Risk Diversification in Crude Oil Markets," CIRJE F-Series CIRJE-F-640, CIRJE, Faculty of Economics, University of Tokyo.
  3. Lin, Sharon Xiaowen & Tamvakis, Michael N., 2001. "Spillover effects in energy futures markets," Energy Economics, Elsevier, vol. 23(1), pages 43-56, January.
  4. Hammoudeh, Shawkat M. & Yuan, Yuan & McAleer, Michael, 2009. "Shock and volatility spillovers among equity sectors of the Gulf Arab stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 49(3), pages 829-842, August.
  5. Lien, Donald & Tse, Y K, 2002. " Some Recent Developments in Futures Hedging," Journal of Economic Surveys, Wiley Blackwell, vol. 16(3), pages 357-96, July.
  6. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(01), pages 29-52, March.
  7. Milunovich, George & Thorp, Susan, 2006. "Valuing volatility spillovers," Global Finance Journal, Elsevier, vol. 17(1), pages 1-22, September.
  8. McAleer, Michael & Chan, Felix & Hoti, Suhejla & Lieberman, Offer, 2008. "Generalized Autoregressive Conditional Correlation," Econometric Theory, Cambridge University Press, vol. 24(06), pages 1554-1583, December.
  9. Massimiliano Caporin & Michael McAleer, 2009. "Do We Really Need Both BEKK and DCC? A Tale of Two Covariance Models," Documentos de Trabajo del ICAE 0904, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  10. Chen, Sheng-Syan & Lee, Cheng-few & Shrestha, Keshab, 2003. "Futures hedge ratios: a review," The Quarterly Review of Economics and Finance, Elsevier, vol. 43(3), pages 433-465.
  11. Martin Sola & Fabio Spagnolo & Nicola Spagnolo, 2002. "A Test for Volatility Spillovers," Economics and Finance Discussion Papers 02-04, Economics and Finance Section, School of Social Sciences, Brunel University.
  12. Ewing, Bradley T. & Malik, Farooq & Ozfidan, Ozkan, 2002. "Volatility transmission in the oil and natural gas markets," Energy Economics, Elsevier, vol. 24(6), pages 525-538, November.
  13. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  14. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(02), pages 280-310, April.
  15. Michael McAleer & Suhejla Hoti & Felix Chan, 2009. "Structure and Asymptotic Theory for Multivariate Asymmetric Conditional Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 28(5), pages 422-440.
  16. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  17. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(04), pages 535-551, December.
  18. da Veiga, Bernardo & Chan, Felix & McAleer, Michael, 2008. "Modelling the volatility transmission and conditional correlations between A and B shares in forecasting value-at-risk," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 78(2), pages 155-171.
  19. Hassan, Syed Aun & Malik, Farooq, 2007. "Multivariate GARCH modeling of sector volatility transmission," The Quarterly Review of Economics and Finance, Elsevier, vol. 47(3), pages 470-480, July.
  20. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  21. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(01), pages 232-261, February.
  22. McAleer, Michael & Chan, Felix & Marinova, Dora, 2007. "An econometric analysis of asymmetric volatility: Theory and application to patents," Journal of Econometrics, Elsevier, vol. 139(2), pages 259-284, August.
  23. Hammoudeh, Shawkat & Li, Huimin & Jeon, Bang, 2003. "Causality and volatility spillovers among petroleum prices of WTI, gasoline and heating oil in different locations," The North American Journal of Economics and Finance, Elsevier, vol. 14(1), pages 89-114, March.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Conrad, Christian & Weber, Enzo, 2013. "Measuring Persistence in Volatility Spillovers," University of Regensburg Working Papers in Business, Economics and Management Information Systems 473, University of Regensburg, Department of Economics.
  2. Matteo Manera & Marcella Nicolini & Ilaria Vignati, 2012. "Returns in Commodities Futures Markets and Financial Speculation: A Multivariate GARCH Approach," Working Papers 2012.23, Fondazione Eni Enrico Mattei.
  3. Walid Chkili & Shawkat Hammoudeh & Duc Khuong Nguyen, 2014. "Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory," Working Papers 2014-389, Department of Research, Ipag Business School.
  4. Nazarian, Rafik & Naderi, Esmaeil & Gandali Alikhani, Nadiya & Amiri, Ashkan, 2013. "Long Memory Analysis: An Empirical Investigation," MPRA Paper 45605, University Library of Munich, Germany.
  5. Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
  6. Jozef Barunik & Evzen Kocenda & Lukas Vacha, 2014. "How does bad and good volatility spill over across petroleum markets?," Papers 1405.2445, arXiv.org.
  7. Lu, Feng-bin & Hong, Yong-miao & Wang, Shou-yang & Lai, Kin-keung & Liu, John, 2014. "Time-varying Granger causality tests for applications in global crude oil markets," Energy Economics, Elsevier, vol. 42(C), pages 289-298.
  8. Tansuchat, R. & Chang, C-L. & McAleer, M.J., 2010. "Crude Oil Hedging Strategies Using Dynamic Multivariate GARCH," Econometric Institute Research Papers EI 2010-10, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  9. Jäschke, Stefan, 2014. "Estimation of risk measures in energy portfolios using modern copula techniques," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 359-376.
  10. Gronwald, Marc, 2012. "A characterization of oil price behavior — Evidence from jump models," Energy Economics, Elsevier, vol. 34(5), pages 1310-1317.
  11. Lee, Chien-Chiang & Zeng, Jhih-Hong, 2011. "The impact of oil price shocks on stock market activities: Asymmetric effect with quantile regression," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(9), pages 1910-1920.
  12. He, Kaijian & Wang, Lijun & Zou, Yingchao & Lai, Kin Keung, 2014. "Value at risk estimation with entropy-based wavelet analysis in exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 62-71.
  13. Sadorsky, Perry, 2012. "Correlations and volatility spillovers between oil prices and the stock prices of clean energy and technology companies," Energy Economics, Elsevier, vol. 34(1), pages 248-255.
  14. Kaijian He & Kin Keung Lai & Guocheng Xiang, 2012. "Portfolio Value at Risk Estimate for Crude Oil Markets: A Multivariate Wavelet Denoising Approach," Energies, MDPI, Open Access Journal, vol. 5(4), pages 1018-1043, April.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:32:y:2010:i:6:p:1445-1455. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.