IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v50y2019icp113-124.html
   My bibliography  Save this article

Dynamic portfolio allocation with time-varying jump risk

Author

Listed:
  • Zhou, Chunyang
  • Wu, Chongfeng
  • Wang, Yudong

Abstract

This paper solves the dynamic portfolio allocation problem with account of time-varying jump risk. We find that both the initial jump intensity as a state variable and the jump dynamics including the average jump intensity and jump persistence are important for the investor’s optimal portfolio decision. The risk-averse investor can benefit from the optimal dynamic strategy instead of the myopic strategy. The out-of-sample results show that compared with the no-jump model, constant-jump model or the equal weighted portfolio, the dynamic portfolio with account of time-varying jump risk can produce better performance, and is more preferred by the risk-averse investor.

Suggested Citation

  • Zhou, Chunyang & Wu, Chongfeng & Wang, Yudong, 2019. "Dynamic portfolio allocation with time-varying jump risk," Journal of Empirical Finance, Elsevier, vol. 50(C), pages 113-124.
  • Handle: RePEc:eee:empfin:v:50:y:2019:i:c:p:113-124
    DOI: 10.1016/j.jempfin.2019.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927539819300039
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jempfin.2019.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maheu, John M. & McCurdy, Thomas H. & Zhao, Xiaofei, 2013. "Do jumps contribute to the dynamics of the equity premium?," Journal of Financial Economics, Elsevier, vol. 110(2), pages 457-477.
    2. Andrew Ang & Geert Bekaert, 2002. "International Asset Allocation With Regime Shifts," The Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1137-1187.
    3. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Oxford University Press, vol. 4(1), pages 1-30.
    4. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    5. Chan, Wing H., 2004. "Conditional correlated jump dynamics in foreign exchange," Economics Letters, Elsevier, vol. 83(1), pages 23-28, April.
    6. Ornthanalai, Chayawat, 2014. "Lévy jump risk: Evidence from options and returns," Journal of Financial Economics, Elsevier, vol. 112(1), pages 69-90.
    7. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
    8. Jun Liu & Francis A. Longstaff & Jun Pan, 2003. "Dynamic Asset Allocation with Event Risk," Journal of Finance, American Finance Association, vol. 58(1), pages 231-259, February.
    9. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat, 2012. "Dynamic jump intensities and risk premiums: Evidence from S&P500 returns and options," Journal of Financial Economics, Elsevier, vol. 106(3), pages 447-472.
    10. Xiaoping Li & Chunyang Zhou, 2018. "Dynamic asset allocation with asymmetric jump distribution," China Finance Review International, Emerald Group Publishing Limited, vol. 8(4), pages 387-398, March.
    11. Chan, Wing H & Maheu, John M, 2002. "Conditional Jump Dynamics in Stock Market Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 377-389, July.
    12. Yan, Shu, 2011. "Jump risk, stock returns, and slope of implied volatility smile," Journal of Financial Economics, Elsevier, vol. 99(1), pages 216-233, January.
    13. Peter Nyberg & Anders Wilhelmsson, 2009. "Measuring Event Risk," Journal of Financial Econometrics, Oxford University Press, vol. 7(3), pages 265-287, Summer.
    14. John M. Maheu & Thomas H. McCurdy, 2004. "News Arrival, Jump Dynamics, and Volatility Components for Individual Stock Returns," Journal of Finance, American Finance Association, vol. 59(2), pages 755-793, April.
    15. Sanjiv Ranjan Das & Raman Uppal, 2004. "Systemic Risk and International Portfolio Choice," Journal of Finance, American Finance Association, vol. 59(6), pages 2809-2834, December.
    16. Su, Jung-Bin & Hung, Jui-Cheng, 2011. "Empirical analysis of jump dynamics, heavy-tails and skewness on value-at-risk estimation," Economic Modelling, Elsevier, vol. 28(3), pages 1117-1130, May.
    17. Bjørn Eraker, 2004. "Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices," Journal of Finance, American Finance Association, vol. 59(3), pages 1367-1404, June.
    18. Hong Miao & Sanjay Ramchander & J. Kenton Zumwalt, 2014. "S&P 500 Index‐Futures Price Jumps and Macroeconomic News," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(10), pages 980-1001, October.
    19. Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
    20. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    21. DeMiguel, Victor & Plyakha, Yuliya & Uppal, Raman & Vilkov, Grigory, 2013. "Improving Portfolio Selection Using Option-Implied Volatility and Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(6), pages 1813-1845, December.
    22. Jeff Fleming & Chris Kirby & Barbara Ostdiek, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, February.
    23. Massimo Guidolin & Allan Timmermann, 2008. "International asset allocation under regime switching, skew, and kurtosis preferences," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 889-935, April.
    24. Jung-Bin Su, 2014. "How to mitigate the impact of inappropriate distributional settings when the parametric value-at-risk approach is used," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 305-325, February.
    25. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    26. Chang, Ting-Huan & Su, Hsin-Mei & Chiu, Chien-Liang, 2011. "Value-at-risk estimation with the optimal dynamic biofuel portfolio," Energy Economics, Elsevier, vol. 33(2), pages 264-272, March.
    27. Kole, Erik & Koedijk, Kees & Verbeek, Marno, 2006. "Portfolio implications of systemic crises," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2347-2369, August.
    28. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Díaz & Carlos Esparcia, 2021. "Dynamic optimal portfolio choice under time-varying risk aversion," International Economics, CEPII research center, issue 166, pages 1-22.
    2. Kam Fong Chan & Phil Gray & Zheyao Pan, 2021. "The profitability of trading on large Lévy jumps," International Review of Finance, International Review of Finance Ltd., vol. 21(2), pages 627-635, June.
    3. Anupam Dutta & Elie Bouri, 2022. "Outliers and Time-Varying Jumps in the Cryptocurrency Markets," JRFM, MDPI, vol. 15(3), pages 1-7, March.
    4. Dai, Xingyu & Li, Matthew C. & Xiao, Ling & Wang, Qunwei, 2022. "COVID-19 and China commodity price jump behavior: An information spillover and wavelet coherency analysis," Resources Policy, Elsevier, vol. 79(C).
    5. Huang, Chuangxia & Zhao, Xian & Deng, Yunke & Yang, Xiaoguang & Yang, Xin, 2022. "Evaluating influential nodes for the Chinese energy stocks based on jump volatility spillover network," International Review of Economics & Finance, Elsevier, vol. 78(C), pages 81-94.
    6. Ao Kong & Robert Azencott & Hongliang Zhu & Xindan Li, 2020. "Pattern recognition in micro-trading behaviors before stock price jumps: A framework based on multivariate time series analysis," Papers 2011.04939, arXiv.org, revised Feb 2021.
    7. Chunyang Zhou & Chongfeng Wu & Weidong Xu, 2020. "Incorporating time‐varying jump intensities in the mean‐variance portfolio decisions," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(3), pages 460-478, March.
    8. Hsiang-Hsi Liu & Yu-Cheng Lin, 2021. "Relationships among US S&P500 Stock Index, its Futures and NASDAQ Index Futures with Volatility Spillover and Jump Diffusion: Modeling and Hedging Performance," Bulletin of Applied Economics, Risk Market Journals, vol. 8(1), pages 121-148.
    9. Mengting Li & Qifa Xu & Cuixia Jiang & Qinna Zhao, 2023. "The role of tail network topological characteristic in portfolio selection: A TNA‐PMC model," International Review of Finance, International Review of Finance Ltd., vol. 23(1), pages 37-57, March.
    10. Anupam Dutta & Debojyoti Das, 2022. "Forecasting realized volatility: New evidence from time‐varying jumps in VIX," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2165-2189, December.
    11. Dutta, Anupam & Soytas, Ugur & Das, Debojyoti & Bhattacharyya, Asit, 2022. "In search of time-varying jumps during the turmoil periods: Evidence from crude oil futures markets," Energy Economics, Elsevier, vol. 114(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chunyang Zhou & Chongfeng Wu & Weidong Xu, 2020. "Incorporating time‐varying jump intensities in the mean‐variance portfolio decisions," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(3), pages 460-478, March.
    2. Piccotti, Louis R., 2018. "Jumps, cojumps, and efficiency in the spot foreign exchange market," Journal of Banking & Finance, Elsevier, vol. 87(C), pages 49-67.
    3. Li, Gang & Zhang, Chu, 2016. "On the relationship between conditional jump intensity and diffusive volatility," Journal of Empirical Finance, Elsevier, vol. 37(C), pages 196-213.
    4. Qian, Ya & Tu, Jun & Härdle, Wolfgang Karl, 2019. "Information Arrival, News Sentiment, Volatilities and Jumps of Intraday Returns," IRTG 1792 Discussion Papers 2019-002, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    5. Maneesoonthorn, Worapree & Martin, Gael M. & Forbes, Catherine S., 2020. "High-frequency jump tests: Which test should we use?," Journal of Econometrics, Elsevier, vol. 219(2), pages 478-487.
    6. Worapree Maneesoonthorn & Gael M. Martin & Catherine S. Forbes, 2017. "Dynamic asset price jumps and the performance of high frequency tests and measures," Monash Econometrics and Business Statistics Working Papers 14/17, Monash University, Department of Econometrics and Business Statistics.
    7. Aït-Sahalia, Yacine & Cacho-Diaz, Julio & Laeven, Roger J.A., 2015. "Modeling financial contagion using mutually exciting jump processes," Journal of Financial Economics, Elsevier, vol. 117(3), pages 585-606.
    8. Worapree Maneesoonthorn & Gael M Martin & Catherine S Forbes, 2018. "Dynamic price jumps: The performance of high frequency tests and measures, and the robustness of inference," Monash Econometrics and Business Statistics Working Papers 17/18, Monash University, Department of Econometrics and Business Statistics.
    9. Nolte, Ingmar & Xu, Qi, 2015. "The economic value of volatility timing with realized jumps," Journal of Empirical Finance, Elsevier, vol. 34(C), pages 45-59.
    10. Kuttu, Saint, 2017. "Time-varying conditional discrete jumps in emerging African equity markets," Global Finance Journal, Elsevier, vol. 32(C), pages 35-54.
    11. Arouri, Mohamed & M’saddek, Oussama & Nguyen, Duc Khuong & Pukthuanthong, Kuntara, 2019. "Cojumps and asset allocation in international equity markets," Journal of Economic Dynamics and Control, Elsevier, vol. 98(C), pages 1-22.
    12. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    13. Donatien Hainaut & Franck Moraux, 2019. "A switching self-exciting jump diffusion process for stock prices," Annals of Finance, Springer, vol. 15(2), pages 267-306, June.
    14. Du Du & Dan Luo, 2019. "The Pricing of Jump Propagation: Evidence from Spot and Options Markets," Management Science, INFORMS, vol. 67(5), pages 2360-2387, May.
    15. Chorro, Christophe & Ielpo, Florian & Sévi, Benoît, 2020. "The contribution of intraday jumps to forecasting the density of returns," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    16. Peter Christoffersen & Bruno Feunou & Yoontae Jeon & Chayawat Ornthanalai, 2016. "Time-Varying Crash Risk: The Role of Stock Market Liquidity," Staff Working Papers 16-35, Bank of Canada.
    17. repec:hal:journl:peer-00741630 is not listed on IDEAS
    18. Giacomo Bormetti & Lucio Maria Calcagnile & Michele Treccani & Fulvio Corsi & Stefano Marmi & Fabrizio Lillo, 2013. "Modelling systemic price cojumps with Hawkes factor models," Papers 1301.6141, arXiv.org, revised Mar 2013.
    19. Li, Chenxing & Maheu, John M, 2020. "A Multivariate GARCH-Jump Mixture Model," MPRA Paper 104770, University Library of Munich, Germany.
    20. Fulvio Corsi & Davide Pirino & Roberto Renò, 2008. "Volatility forecasting: the jumps do matter," Department of Economics University of Siena 534, Department of Economics, University of Siena.
    21. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:50:y:2019:i:c:p:113-124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.