IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v210y2008i1p161-168.html
   My bibliography  Save this article

Optimal harvesting time in a size-heterogeneous population

Author

Listed:
  • Gasca-Leyva, Eucario
  • Hernández, Juan M.
  • Veliov, Vladimir M.

Abstract

This paper analyzes the optimal harvesting time for husbanded biological assets consisting of individuals of different sizes. In contrast to previous works which include a random variable in the growth function, it is assumed that the heterogeneity is caused by differences in the initial sizes of the planted culture. Therefore, the evolution of the population with a given growth pattern is described by a size-structured dynamic model. An optimality condition is obtained and compared with the one known in the size-homogeneous case. If the size heterogeneity is taken into account, then under appropriate natural conditions for the biological and economic factors, the resource should be maintained longer compared with the recommendations obtained from the homogeneous models of the same culture. The theoretical findings are confirmed by numerical experiments with a hypothetical culture, and an application to the tilapia farming in Mexico.

Suggested Citation

  • Gasca-Leyva, Eucario & Hernández, Juan M. & Veliov, Vladimir M., 2008. "Optimal harvesting time in a size-heterogeneous population," Ecological Modelling, Elsevier, vol. 210(1), pages 161-168.
  • Handle: RePEc:eee:ecomod:v:210:y:2008:i:1:p:161-168
    DOI: 10.1016/j.ecolmodel.2007.07.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380007003729
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2007.07.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Willassen, Yngve, 1998. "The stochastic rotation problem: A generalization of Faustmann's formula to stochastic forest growth," Journal of Economic Dynamics and Control, Elsevier, vol. 22(4), pages 573-596, April.
    2. Chang, Fwu-Ranq, 2005. "On the elasticities of harvesting rules," Journal of Economic Dynamics and Control, Elsevier, vol. 29(3), pages 469-485, March.
    3. Reed, William J & Clarke, Harry R, 1990. "Harvest Decisions and Asset Valuation for Biological Resources Exhibiting Size-Dependent Stochastic Growth," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 31(1), pages 147-169, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Domínguez-May, Roger & Poot-López, Gaspar R. & Hernández, Juan & Gasca-Leyva, Eucario, 2020. "Dynamic optimal ration size in tilapia culture: Economic and environmental considerations," Ecological Modelling, Elsevier, vol. 420(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leon-Santana, Miguel & Hernandez, Juan M., 2008. "Optimum management and environmental protection in the aquaculture industry," Ecological Economics, Elsevier, vol. 64(4), pages 849-857, February.
    2. Alvarez, Luis H.R. & Koskela, Erkki, 2006. "Does risk aversion accelerate optimal forest rotation under uncertainty?," Journal of Forest Economics, Elsevier, vol. 12(3), pages 171-184, December.
    3. Tahvonen, Olli & Suominen, Antti & Malo, Pekka & Viitasaari, Lauri & Parkatti, Vesa-Pekka, 2022. "Optimizing high-dimensional stochastic forestry via reinforcement learning," Journal of Economic Dynamics and Control, Elsevier, vol. 145(C).
    4. Ben Abdallah, Skander & Lasserre, Pierre, 2016. "Asset retirement with infinitely repeated alternative replacements: Harvest age and species choice in forestry," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 144-164.
    5. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    6. Creamer, Selmin F. & Genz, Alan & Blatner, Keith A., 2012. "The Effect of Fire Risk on the Critical Harvesting Times for Pacific Northwest Douglas-Fir When Carbon Price Is Stochastic," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 41(3), pages 1-14, December.
    7. Alvarez, Luis H.R. & Koskela, Erkki, 2007. "Optimal harvesting under resource stock and price uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2461-2485, July.
    8. Luis H. R. Alvarez & Erkki Koskela, 2003. "On the Tree-Cutting Problem under Interest Rate and Forest Value Uncertainty," CESifo Working Paper Series 870, CESifo.
    9. Alvarez, Luis H.R. & Koskela, Erkki, 2007. "Taxation and rotation age under stochastic forest stand value," Journal of Environmental Economics and Management, Elsevier, vol. 54(1), pages 113-127, July.
    10. Alvarez, Luis H R & Koskela, Erkki, 2003. "On Forest Rotation under Interest Rate Variability," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 10(4), pages 489-503, August.
    11. Motoh, Tsujimura, 2004. "Optimal natural resources management under uncertainty with catastrophic risk," Energy Economics, Elsevier, vol. 26(3), pages 487-499, May.
    12. Sloggy, Matthew R. & Kling, David M. & Plantinga, Andrew J., 2020. "Measure twice, cut once: Optimal inventory and harvest under volume uncertainty and stochastic price dynamics," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    13. Shackleton, Mark B. & Sødal, Sigbjørn, 2010. "Harvesting and recovery decisions under uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 34(12), pages 2533-2546, December.
    14. Chen, Shan & Insley, Margaret, 2012. "Regime switching in stochastic models of commodity prices: An application to an optimal tree harvesting problem," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 201-219.
    15. Rafael González-Val, 2021. "The Probability Distribution of Worldwide Forest Areas," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    16. Tee, James & Scarpa, Riccardo & Marsh, Dan & Guthrie, Graeme, 2012. "Valuation of Carbon Forestry and the New Zealand Emissions Trading Scheme: A Real Options Approach Using the Binomial Tree Method," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 123665, International Association of Agricultural Economists.
    17. Tahvonen, Olli & Salo, Seppo & Kuuluvainen, Jari, 2001. "Optimal forest rotation and land values under a borrowing constraint," Journal of Economic Dynamics and Control, Elsevier, vol. 25(10), pages 1595-1627, October.
    18. Navarrete, Eduardo & Bustos, Jaime, 2013. "Faustmann optimal pine stands stochastic rotation problem," Forest Policy and Economics, Elsevier, vol. 30(C), pages 39-45.
    19. Conrad, Jon M., 1997. "On the option value of old-growth forest," Ecological Economics, Elsevier, vol. 22(2), pages 97-102, August.
    20. Insley, Margaret, 2002. "A Real Options Approach to the Valuation of a Forestry Investment," Journal of Environmental Economics and Management, Elsevier, vol. 44(3), pages 471-492, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:210:y:2008:i:1:p:161-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.