IDEAS home Printed from https://ideas.repec.org/a/eee/jeeman/v103y2020ics0095069620300802.html
   My bibliography  Save this article

Measure twice, cut once: Optimal inventory and harvest under volume uncertainty and stochastic price dynamics

Author

Listed:
  • Sloggy, Matthew R.
  • Kling, David M.
  • Plantinga, Andrew J.

Abstract

Natural resources are often subject to state uncertainty: resource abundance is not known with certainty, but can be measured. Measurements are typically imperfect and costly to obtain. The decision of whether to invest in resource measurement may be influenced by other state variables, for example a resource commodity price. We introduce a mixed-observability model of optimal forest management featuring a partially-observable forest resource and perfectly-observable stochastic price. The decision maker optimizes the expected net present value of forest returns by choosing when to measure current forest volume (conduct an inventory), harvest and replant, or delay action. Parameter values are obtained from numerous forestry data sources. Optimal investment in inventory reduces the cost of uncertainty about timber volume and increases the predictability of returns. Moreover, price stochasticity interacts with inventory decisions to produce asymmetric effects of high and low prices on inventory timing. We also produce the first graphical Faustmann rule analogues for jointly-optimal inventory and harvest.

Suggested Citation

  • Sloggy, Matthew R. & Kling, David M. & Plantinga, Andrew J., 2020. "Measure twice, cut once: Optimal inventory and harvest under volume uncertainty and stochastic price dynamics," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
  • Handle: RePEc:eee:jeeman:v:103:y:2020:i:c:s0095069620300802
    DOI: 10.1016/j.jeem.2020.102357
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0095069620300802
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeem.2020.102357?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacob LaRiviere & David Kling & James N Sanchirico & Charles Sims & Michael Springborn, 2018. "The Treatment of Uncertainty and Learning in the Economics of Natural Resource and Environmental Management," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 92-112.
    2. Gregory S. Amacher & Markku Ollikainen & Erkki A. Koskela, 2009. "Economics of Forest Resources," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012480, December.
    3. Charles Sims & David Finnoff & Alan Hastings & Jacob Hochard, 2017. "Listing and Delisting Thresholds under the Endangered Species Act," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(3), pages 549-570.
    4. Willassen, Yngve, 1998. "The stochastic rotation problem: A generalization of Faustmann's formula to stochastic forest growth," Journal of Economic Dynamics and Control, Elsevier, vol. 22(4), pages 573-596, April.
    5. Bruce L. Dixon & Richard E. Howitt, 1980. "Resource Production Under Uncertainty: A Stochastic Control Approach to Timber Harvest Scheduling," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 62(3), pages 499-507.
    6. Springborn, Michael & Sanchirico, James N., 2013. "A density projection approach for non-trivial information dynamics: Adaptive management of stochastic natural resources," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 609-624.
    7. Kling, David M. & Sanchirico, James N. & Fackler, Paul L., 2017. "Optimal monitoring and control under state uncertainty: Application to lionfish management," Journal of Environmental Economics and Management, Elsevier, vol. 84(C), pages 223-245.
    8. Clark, Colin W. & Kirkwood, Geoffrey P., 1986. "On uncertain renewable resource stocks: Optimal harvest policies and the value of stock surveys," Journal of Environmental Economics and Management, Elsevier, vol. 13(3), pages 235-244, September.
    9. Christos H. Papadimitriou & John N. Tsitsiklis, 1987. "The Complexity of Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 12(3), pages 441-450, August.
    10. Matthew J. MacLachlan & Michael R. Springborn & Paul L. Fackler, 2017. "Learning about a Moving Target in Resource Management: Optimal Bayesian Disease Control," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(1), pages 140-162.
    11. Thomas A. Thomson, 1992. "Optimal Forest Rotation When Stumpage Prices Follow a Diffusion Process," Land Economics, University of Wisconsin Press, vol. 68(3), pages 329-342.
    12. Morck, Randall & Schwartz, Eduardo & Stangeland, David, 1989. "The Valuation of Forestry Resources under Stochastic Prices and Inventories," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(4), pages 473-487, December.
    13. Tahvonen, Olli & Quaas, Martin F. & Voss, Rüdiger, 2018. "Harvesting selectivity and stochastic recruitment in economic models of age-structured fisheries," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 659-676.
    14. Olli Tahvonen, 2004. "Optimal Harvesting Of Forest Age Classes: A Survey Of Some Recent Results," Mathematical Population Studies, Taylor & Francis Journals, vol. 11(3-4), pages 205-232.
    15. Reed, William J & Clarke, Harry R, 1990. "Harvest Decisions and Asset Valuation for Biological Resources Exhibiting Size-Dependent Stochastic Growth," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 31(1), pages 147-169, February.
    16. Guo, Christopher & Costello, Christopher, 2013. "The value of adaption: Climate change and timberland management," Journal of Environmental Economics and Management, Elsevier, vol. 65(3), pages 452-468.
    17. Reed, William J., 1979. "Optimal escapement levels in stochastic and deterministic harvesting models," Journal of Environmental Economics and Management, Elsevier, vol. 6(4), pages 350-363, December.
    18. Brett A. Melbourne & Alan Hastings, 2008. "Extinction risk depends strongly on factors contributing to stochasticity," Nature, Nature, vol. 454(7200), pages 100-103, July.
    19. Hartman, Richard, 1976. "The Harvesting Decision When a Standing Forest Has Value," Economic Inquiry, Western Economic Association International, vol. 14(1), pages 52-58, March.
    20. Fackler, Paul L. & Haight, Robert G., 2014. "Monitoring as a partially observable decision problem," Resource and Energy Economics, Elsevier, vol. 37(C), pages 226-241.
    21. Waggoner, Paul E., 2009. "Forest Inventories: Discrepancies and Uncertainties," RFF Working Paper Series dp-09-29.pdf, Resources for the Future.
    22. Tahvonen, Olli, 2016. "Economics of rotation and thinning revisited: the optimality of clearcuts versus continuous cover forestry," Forest Policy and Economics, Elsevier, vol. 62(C), pages 88-94.
    23. Reed, William J., 1984. "The effects of the risk of fire on the optimal rotation of a forest," Journal of Environmental Economics and Management, Elsevier, vol. 11(2), pages 180-190, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael González-Val, 2021. "The Probability Distribution of Worldwide Forest Areas," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    2. Fishman, Ram & B Krishnamurthy, Chandra Kiran, 2021. "An ecological golden rule," Resource and Energy Economics, Elsevier, vol. 64(C).
    3. Pablo Garcia, 2024. "Optimal timing of environmental policy under partial information," BCL working papers 180, Central Bank of Luxembourg.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    2. Creamer, Selmin F. & Genz, Alan & Blatner, Keith A., 2012. "The Effect of Fire Risk on the Critical Harvesting Times for Pacific Northwest Douglas-Fir When Carbon Price Is Stochastic," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 41(3), pages 1-14, December.
    3. Kling, David M. & Sanchirico, James N. & Fackler, Paul L., 2017. "Optimal monitoring and control under state uncertainty: Application to lionfish management," Journal of Environmental Economics and Management, Elsevier, vol. 84(C), pages 223-245.
    4. Jacob LaRiviere & David Kling & James N Sanchirico & Charles Sims & Michael Springborn, 2018. "The Treatment of Uncertainty and Learning in the Economics of Natural Resource and Environmental Management," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 92-112.
    5. Ben Abdallah, Skander & Lasserre, Pierre, 2016. "Asset retirement with infinitely repeated alternative replacements: Harvest age and species choice in forestry," Journal of Economic Dynamics and Control, Elsevier, vol. 70(C), pages 144-164.
    6. Alvarez, Luis H. R. & Koskela, Erkki, 2005. "Wicksellian theory of forest rotation under interest rate variability," Journal of Economic Dynamics and Control, Elsevier, vol. 29(3), pages 529-545, March.
    7. Alvarez, Luis H.R. & Koskela, Erkki, 2007. "Optimal harvesting under resource stock and price uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 31(7), pages 2461-2485, July.
    8. Alvarez, Luis H.R. & Koskela, Erkki, 2007. "Taxation and rotation age under stochastic forest stand value," Journal of Environmental Economics and Management, Elsevier, vol. 54(1), pages 113-127, July.
    9. Skander BEN ABDALLAH & Pierre LASSERRE, 2015. "Optimum Forest Rotations of Alternative Tree Species," Cahiers de recherche 06-2015, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    10. Ben Abdallah, Skander & Lasserre, Pierre, 2017. "Forest land value and rotation with an alternative land use," Journal of Forest Economics, Elsevier, vol. 29(PB), pages 118-127.
    11. Morag F. Macpherson & Adam Kleczkowski & John R. Healey & Nick Hanley, 2018. "The Effects of Disease on Optimal Forest Rotation: A Generalisable Analytical Framework," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(3), pages 565-588, July.
    12. Alvarez, Luis H R & Koskela, Erkki, 2003. "On Forest Rotation under Interest Rate Variability," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 10(4), pages 489-503, August.
    13. Yu, Zhihan & Ning, Zhuo & Chang, Wei-Yew & Chang, Sun Joseph & Yang, Hongqiang, 2023. "Optimal harvest decisions for the management of carbon sequestration forests under price uncertainty and risk preferences," Forest Policy and Economics, Elsevier, vol. 151(C).
    14. Strange, Niels & Jacobsen, Jette Bredahl & Thorsen, Bo Jellesmark, 2019. "Afforestation as a real option with joint production of environmental services," Forest Policy and Economics, Elsevier, vol. 104(C), pages 146-156.
    15. Insley, Margaret & Lei, Manle, 2007. "Hedges and Trees: Incorporating Fire Risk into Optimal Decisions in Forestry Using a No-Arbitrage Approach," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 32(3), pages 1-23, December.
    16. Baggio, Michele & Fackler, Paul L., 2016. "Optimal management with reversible regime shifts," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 124-136.
    17. Chen, Shan & Insley, Margaret, 2012. "Regime switching in stochastic models of commodity prices: An application to an optimal tree harvesting problem," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 201-219.
    18. Couture, Stéphane & Reynaud, Arnaud, 2011. "Forest management under fire risk when forest carbon sequestration has value," Ecological Economics, Elsevier, vol. 70(11), pages 2002-2011, September.
    19. Rakotoarison, Hanitra & Loisel, Patrice, 2016. "The Faustmann model under storm risk and price uncertainty: A case study of European beech in Northwestern France," MPRA Paper 85114, University Library of Munich, Germany.
    20. Morag F. Macpherson & Adam Kleczkowski & John Healey & Nick Hanley, 2015. "When to harvest? The effect of disease on optimal forest rotation," Discussion Papers in Environment and Development Economics 2015-19, University of St. Andrews, School of Geography and Sustainable Development.

    More about this item

    JEL classification:

    • Q57 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Ecological Economics
    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeeman:v:103:y:2020:i:c:s0095069620300802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/622870 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.