IDEAS home Printed from https://ideas.repec.org/a/eee/jeborg/v132y2016ipbp124-136.html
   My bibliography  Save this article

Optimal management with reversible regime shifts

Author

Listed:
  • Baggio, Michele
  • Fackler, Paul L.

Abstract

In this paper we examine the management of a natural resource, a fishery, subject to regime shifting dynamics. A regime shift is defined as an episode in which the dynamics of the resource can switch between two alternative regimes at random times. Specifically, we study the impact of reversible regime switching, both observed and unobserved, on optimal harvesting policy. The case in which the regime is not directly observed, i.e., observational uncertainty, is addressed by using the extended POMDP approach developed in Fackler and Pacifici (2014). We illustrate the performance of the model under different assumptions on the underlying stochastic growth variability, the biological structure of the stock in different regimes, and the resilience of the regimes. When the regime is known optimal policies depend on the population level and which regime is currently active. When the regime is unobserved, on the other hand, the optimal policy depends on the population level and a belief distribution about the current regime. In general when the probability of regime change is fixed, and hence is not affected by harvesting policy, the optimal policy is of the constant-escapement variety. When the probability of switching regime is endogenous the optimal policy is no longer of the constant-escapement type. Optimal policies when the regime is uncertain are approximately equal to a weighted average of the policies when the regime is certain, with the weights equal to the beliefs in the associated regimes, but there are differences.

Suggested Citation

  • Baggio, Michele & Fackler, Paul L., 2016. "Optimal management with reversible regime shifts," Journal of Economic Behavior & Organization, Elsevier, vol. 132(PB), pages 124-136.
  • Handle: RePEc:eee:jeborg:v:132:y:2016:i:pb:p:124-136
    DOI: 10.1016/j.jebo.2016.04.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167268116300567
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jebo.2016.04.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul L Fackler & Krishna Pacifici & Julien Martin & Carol McIntyre, 2014. "Efficient Use of Information in Adaptive Management with an Application to Managing Recreation near Golden Eagle Nesting Sites," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-14, August.
    2. Ren, Bijie & Polasky, Stephen, 2014. "The optimal management of renewable resources under the risk of potential regime shift," Journal of Economic Dynamics and Control, Elsevier, vol. 40(C), pages 195-212.
    3. de Zeeuw, Aart & Zemel, Amos, 2012. "Regime shifts and uncertainty in pollution control," Journal of Economic Dynamics and Control, Elsevier, vol. 36(7), pages 939-950.
    4. Polasky, Stephen & de Zeeuw, Aart & Wagener, Florian, 2011. "Optimal management with potential regime shifts," Journal of Environmental Economics and Management, Elsevier, vol. 62(2), pages 229-240, September.
    5. Sethi, Gautam & Costello, Christopher & Fisher, Anthony & Hanemann, Michael & Karp, Larry, 2005. "Fishery management under multiple uncertainty," Journal of Environmental Economics and Management, Elsevier, vol. 50(2), pages 300-318, September.
    6. Sakamoto, Hiroaki, 2014. "Dynamic resource management under the risk of regime shifts," Journal of Environmental Economics and Management, Elsevier, vol. 68(1), pages 1-19.
    7. Craig A. Bond & John B. Loomis, 2009. "Using Numerical Dynamic Programming to Compare Passive and Active Learning in the Adaptive Management of Nutrients in Shallow Lakes," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 57(4), pages 555-573, December.
    8. George E. Monahan, 1982. "State of the Art---A Survey of Partially Observable Markov Decision Processes: Theory, Models, and Algorithms," Management Science, INFORMS, vol. 28(1), pages 1-16, January.
    9. Richard Carson & Clive Granger & Jeremy Jackson & Wolfram Schlenker, 2009. "Fisheries Management Under Cyclical Population Dynamics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 42(3), pages 379-410, March.
    10. Springborn, Michael & Sanchirico, James N., 2013. "A density projection approach for non-trivial information dynamics: Adaptive management of stochastic natural resources," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 609-624.
    11. Fackler, Paul L., 2014. "Structural and Observational Uncertainty in Environmental and Natural Resource Management," International Review of Environmental and Resource Economics, now publishers, vol. 7(2), pages 109-139, July.
    12. Clark, Colin W. & Kirkwood, Geoffrey P., 1986. "On uncertain renewable resource stocks: Optimal harvest policies and the value of stock surveys," Journal of Environmental Economics and Management, Elsevier, vol. 13(3), pages 235-244, September.
    13. Christopher Costello & Stephen Polasky & Andrew Solow, 2001. "Renewable resource management with environmental prediction," Canadian Journal of Economics, Canadian Economics Association, vol. 34(1), pages 196-211, February.
    14. Reed, William J., 1979. "Optimal escapement levels in stochastic and deterministic harvesting models," Journal of Environmental Economics and Management, Elsevier, vol. 6(4), pages 350-363, December.
    15. Fackler, Paul L. & Haight, Robert G., 2014. "Monitoring as a partially observable decision problem," Resource and Energy Economics, Elsevier, vol. 37(C), pages 226-241.
    16. Charles Perrings, 1998. "Resilience in the Dynamics of Economy-Environment Systems," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 11(3), pages 503-520, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neha Deopa & Daniele Rinaldo, 2020. "Quickest Detection of Ecological Regimes for Natural Resource Management," Papers 2005.11500, arXiv.org, revised Mar 2024.
    2. Jacob LaRiviere & David Kling & James N Sanchirico & Charles Sims & Michael Springborn, 2018. "The Treatment of Uncertainty and Learning in the Economics of Natural Resource and Environmental Management," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 92-112.
    3. Sturla F. Kvamsdal, 2022. "Optimal Management of a Renewable Resource Under Multiple Regimes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(3), pages 481-499, March.
    4. Jules Selles, 2018. "Fisheries management: what uncertainties matter?," Working Papers hal-01824238, HAL.
    5. Nkuiya, Bruno & Diekert, Florian, 2023. "Stochastic growth and regime shift risk in renewable resource management," Ecological Economics, Elsevier, vol. 208(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jules Selles, 2018. "Fisheries management: what uncertainties matter?," Working Papers hal-01824238, HAL.
    2. Jacob LaRiviere & David Kling & James N Sanchirico & Charles Sims & Michael Springborn, 2018. "The Treatment of Uncertainty and Learning in the Economics of Natural Resource and Environmental Management," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 92-112.
    3. Michele Baggio, 2016. "Optimal Fishery Management with Regime Shifts: An Assessment of Harvesting Strategies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(3), pages 465-492, July.
    4. Bediako, Kwabena & Nkuiya, Bruno, 2022. "Stability of international fisheries agreements under stock growth uncertainty," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    5. Kling, David M. & Sanchirico, James N. & Fackler, Paul L., 2017. "Optimal monitoring and control under state uncertainty: Application to lionfish management," Journal of Environmental Economics and Management, Elsevier, vol. 84(C), pages 223-245.
    6. Nkuiya, Bruno & Diekert, Florian, 2023. "Stochastic growth and regime shift risk in renewable resource management," Ecological Economics, Elsevier, vol. 208(C).
    7. Ute Kapaun & Martin Quaas, 2013. "Does the Optimal Size of a Fish Stock Increase with Environmental Uncertainties?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(2), pages 293-310, February.
    8. Christopher Costello & Bruno Nkuiya & Nicolas Querou, 2017. "Extracting spatial resources under possible regime shift," Working Papers 17-07, LAMETA, Universtiy of Montpellier.
    9. Can Askan Mavi & Nicolas Quérou, 2020. "Common pool resource management and risk perceptions," DEM Discussion Paper Series 20-25, Department of Economics at the University of Luxembourg.
    10. Costello, Christopher & Quérou, Nicolas & Tomini, Agnes, 2015. "Partial enclosure of the commons," Journal of Public Economics, Elsevier, vol. 121(C), pages 69-78.
    11. Sareh Vosooghi, 2019. "Panic-Based Overfishing in Transboundary Fisheries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 1287-1313, August.
    12. Kelsall, Claudia & Quaas, Martin F. & Quérou, Nicolas, 2023. "Risk aversion in renewable resource harvesting," Journal of Environmental Economics and Management, Elsevier, vol. 121(C).
    13. Miller, Steve & Nkuiya, Bruno, 2016. "Coalition formation in fisheries with potential regime shift," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 189-207.
    14. McGough Bruce & Plantinga Andrew J. & Costello Christopher, 2009. "Optimally Managing a Stochastic Renewable Resource under General Economic Conditions," The B.E. Journal of Economic Analysis & Policy, De Gruyter, vol. 9(1), pages 1-31, December.
    15. Ho Geun Jang & Satoshi Yamazaki & Eriko Hoshino, 2019. "Profit and equity trade‐offs in the management of small pelagic fisheries: the case of the Japanese sardine fishery," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(3), pages 549-574, July.
    16. Can Askan Mavi & Nicolas Quérou, 2020. "Common pool resource management and risk perceptions," CEE-M Working Papers hal-03052114, CEE-M, Universtiy of Montpellier, CNRS, INRA, Montpellier SupAgro.
    17. Tsur, Yacov & Zemel, Amos, 2012. "Dynamic and stochastic analysis of environmental and natural resources," Discussion Papers 120017, Hebrew University of Jerusalem, Department of Agricultural Economics and Management.
    18. Singh, Rajesh & Weninger, Quinn & Doyle, Matthew, 2006. "Fisheries management with stock growth uncertainty and costly capital adjustment," Journal of Environmental Economics and Management, Elsevier, vol. 52(2), pages 582-599, September.
    19. Leizarowitz, Arie & Tsur, Yacov, 2012. "Renewable resource management with stochastic recharge and environmental threats," Journal of Economic Dynamics and Control, Elsevier, vol. 36(5), pages 736-753.
    20. Sloggy, Matthew R. & Kling, David M. & Plantinga, Andrew J., 2020. "Measure twice, cut once: Optimal inventory and harvest under volume uncertainty and stochastic price dynamics," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jeborg:v:132:y:2016:i:pb:p:124-136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jebo .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.