IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v120y2015icp23-31.html
   My bibliography  Save this article

The ICT/electronics question: Structural change and the rebound effect

Author

Listed:
  • Galvin, Ray

Abstract

ICT and related electronic appliances consumed 4% of global electrical energy in 2007, growing to 4.7% in 2012, with projections of continued increase in coming decades. This is despite an average annual increase in energy efficiency of about 30% in ICT/electronics throughout the last 5 decades. Mainstream studies of energy-related rebound effects have yet to produce a conceptual framework that adequately encapsulates a unique feature of ICT/electronics: its tendency to induce changes in social practice and socio-technical structures. This study attempts to fill this gap. Surveying rebound effect literature, it builds on studies which explore ‘transformational’ change caused by energy efficiency increases. It identifies structural changes in business, education, the military and households caused by energy efficiency increases in ICT/electronics, which lead to a proliferation of ICT/electronic devices and consequently increased energy consumption. It shows the cause-and-effect logic between energy efficiency and energy consumption in ICT/electronics, and tentatively estimates rebound effects ranging between 115% and 161% in eight diverse empirical examples. The history of ICT/electronics shows that energy efficiency increases inevitably lead to increases in energy consumption, hence firm controls on CO2e emission allowances may offer the best hope of curbing energy consumption and CO2e emissions in this sector.

Suggested Citation

  • Galvin, Ray, 2015. "The ICT/electronics question: Structural change and the rebound effect," Ecological Economics, Elsevier, vol. 120(C), pages 23-31.
  • Handle: RePEc:eee:ecolec:v:120:y:2015:i:c:p:23-31
    DOI: 10.1016/j.ecolecon.2015.08.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800915300112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2015.08.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brookes, Len, 1990. "The greenhouse effect: the fallacies in the energy efficiency solution," Energy Policy, Elsevier, vol. 18(2), pages 199-201, March.
    2. Jens Malmodin & Åsa Moberg & Dag Lundén & Göran Finnveden & Nina Lövehagen, 2010. "Greenhouse Gas Emissions and Operational Electricity Use in the ICT and Entertainment & Media Sectors," Journal of Industrial Ecology, Yale University, vol. 14(5), pages 770-790, October.
    3. Ewan SUTHERLAND, 2009. "Climate Change: the Contribution of Telecommunications," Communications & Strategies, IDATE, Com&Strat dept., vol. 1(76), pages 61-76, 4th quart.
    4. Ruzzenenti, F. & Basosi, R., 2008. "The role of the power/efficiency misconception in the rebound effect's size debate: Does efficiency actually lead to a power enhancement?," Energy Policy, Elsevier, vol. 36(9), pages 3626-3632, September.
    5. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    6. Mundaca, Luis & Román, Rocio & Cansino, José M., 2015. "Towards a Green Energy Economy? A macroeconomic-climate evaluation of Sweden’s CO2 emissions," Applied Energy, Elsevier, vol. 148(C), pages 196-209.
    7. Barker, Terry & Ekins, Paul & Foxon, Tim, 2007. "The macro-economic rebound effect and the UK economy," Energy Policy, Elsevier, vol. 35(10), pages 4935-4946, October.
    8. Frédéric Dobruszkes, 2009. "New Europe, new low-cost air services," ULB Institutional Repository 2013/95851, ULB -- Universite Libre de Bruxelles.
    9. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    10. Galvin, Ray, 2014. "Estimating broad-brush rebound effects for household energy consumption in the EU 28 countries and Norway: some policy implications of Odyssee data," Energy Policy, Elsevier, vol. 73(C), pages 323-332.
    11. David, Paul A, 1990. "The Dynamo and the Computer: An Historical Perspective on the Modern Productivity Paradox," American Economic Review, American Economic Association, vol. 80(2), pages 355-361, May.
    12. Yu, Biying & Zhang, Junyi & Fujiwara, Akimasa, 2013. "Evaluating the direct and indirect rebound effects in household energy consumption behavior: A case study of Beijing," Energy Policy, Elsevier, vol. 57(C), pages 441-453.
    13. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    14. Ruzzenenti, F. & Basosi, R., 2008. "The rebound effect: An evolutionary perspective," Ecological Economics, Elsevier, vol. 67(4), pages 526-537, November.
    15. Saunders, Harry D., 2013. "Historical evidence for energy efficiency rebound in 30 US sectors and a toolkit for rebound analysts," Technological Forecasting and Social Change, Elsevier, vol. 80(7), pages 1317-1330.
    16. Chitnis, Mona & Sorrell, Steve & Druckman, Angela & Firth, Steven K. & Jackson, Tim, 2013. "Turning lights into flights: Estimating direct and indirect rebound effects for UK households," Energy Policy, Elsevier, vol. 55(C), pages 234-250.
    17. Berry, Linda & Hirst, Eric, 1983. "Evaluating utility residential energy conservation programmes: an overview of an EPRI workshop," Energy Policy, Elsevier, vol. 11(1), pages 77-81, March.
    18. Patterson, Murray G, 1996. "What is energy efficiency? : Concepts, indicators and methodological issues," Energy Policy, Elsevier, vol. 24(5), pages 377-390, May.
    19. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    20. Druckman, Angela & Chitnis, Mona & Sorrell, Steve & Jackson, Tim, 2011. "Missing carbon reductions? Exploring rebound and backfire effects in UK households," Energy Policy, Elsevier, vol. 39(6), pages 3572-3581, June.
    21. Ruttan, Vernon W., 2005. "Military Procurement and Technology Development," Staff Papers 13639, University of Minnesota, Department of Applied Economics.
    22. Dobruszkes, Frédéric, 2009. "New Europe, new low-cost air services," Journal of Transport Geography, Elsevier, vol. 17(6), pages 423-432.
    23. Moyer, Jonathan D. & Hughes, Barry B., 2012. "ICTs: Do they contribute to increased carbon emissions?," Technological Forecasting and Social Change, Elsevier, vol. 79(5), pages 919-931.
    24. Harty D. Saunders, 1992. "The Khazzoom-Brookes Postulate and Neoclassical Growth," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 131-148.
    25. Alcott, Blake, 2005. "Jevons' paradox," Ecological Economics, Elsevier, vol. 54(1), pages 9-21, July.
    26. Berkhout, Peter H. G. & Muskens, Jos C. & W. Velthuijsen, Jan, 2000. "Defining the rebound effect," Energy Policy, Elsevier, vol. 28(6-7), pages 425-432, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szalavetz, Andrea, 2018. "Digitális átalakulás és fenntarthatóság. A technológiaoptimista környezetgazdászok és a pesszimista ökológiai közgazdászok közötti vita újraindítása [Digital transformation and environmental sustai," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(10), pages 1067-1088.
    2. Lei Fan & Yunyun Zhang & Meilin Jin & Qiang Ma & Jing Zhao, 2022. "Does New Digital Infrastructure Promote the Transformation of the Energy Structure? The Perspective of China’s Energy Industry Chain," Energies, MDPI, vol. 15(23), pages 1-18, November.
    3. Galvin, Ray, 2020. "Who co-opted our energy efficiency gains? A sociology of macro-level rebound effects and US car makers," Energy Policy, Elsevier, vol. 142(C).
    4. Lange, Steffen & Pohl, Johanna & Santarius, Tilman, 2020. "Digitalization and energy consumption. Does ICT reduce energy demand?," Ecological Economics, Elsevier, vol. 176(C).
    5. Sun, Hongye & Kim, Giseung, 2021. "The composite impact of ICT industry on lowering carbon intensity: From the perspective of regional heterogeneity," Technology in Society, Elsevier, vol. 66(C).
    6. Bakry, Walid & Nghiem, Xuan-Hoa & Farouk, Sherine & Vo, Xuan Vinh, 2023. "Does it hurt or help? Revisiting the effects of ICT on economic growth and energy consumption: A nonlinear panel ARDL approach," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 597-617.
    7. Galvin, Ray & Sunikka-Blank, Minna, 2016. "Quantification of (p)rebound effects in retrofit policies – Why does it matter?," Energy, Elsevier, vol. 95(C), pages 415-424.
    8. Fouquet, Roger & Hippe, Ralph, 2022. "Twin transitions of decarbonisation and digitalisation: a historical perspective on energy and information in European economies," LSE Research Online Documents on Economics 115544, London School of Economics and Political Science, LSE Library.
    9. Ruzzenenti, Franco & Basosi, Riccardo, 2017. "Modelling the rebound effect with network theory: An insight into the European freight transport sector," Energy, Elsevier, vol. 118(C), pages 272-283.
    10. Xu, Qiong & Zhong, Meirui & Li, Xin, 2022. "How does digitalization affect energy? International evidence," Energy Economics, Elsevier, vol. 107(C).
    11. Sun, Xianming & Xiao, Shiyi & Ren, Xiaohang & Xu, Bing, 2023. "Time-varying impact of information and communication technology on carbon emissions," Energy Economics, Elsevier, vol. 118(C).
    12. Lin, Boqiang & Huang, Chenchen, 2023. "Nonlinear relationship between digitization and energy efficiency: Evidence from transnational panel data," Energy, Elsevier, vol. 276(C).
    13. Ahmadova, Gozal & Delgado-Márquez, Blanca L. & Pedauga, Luis E. & Leyva-de la Hiz, Dante I., 2022. "Too good to be true: The inverted U-shaped relationship between home-country digitalization and environmental performance," Ecological Economics, Elsevier, vol. 196(C).
    14. Galvin, Ray, 2016. "Rebound effects from speed and acceleration in electric and internal combustion engine cars: An empirical and conceptual investigation," Applied Energy, Elsevier, vol. 172(C), pages 207-216.
    15. Wang, Jiangquan & Nghiem, Xuan-Hoa & Jabeen, Fauzia & Luqman, Adeel & Song, Malin, 2023. "Integrated development of digital and energy industries: Paving the way for carbon emission reduction," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    16. Louis-Gaëtan Giraudet & Antoine Missemer, 2023. "The History of Energy Efficiency in Economics: Breakpoints and Regularities," Post-Print halshs-02301636, HAL.
    17. Oliver Lange & Julian Plath & Timo F. Dziggel & David F. Karpa & Mattis Keil & Tom Becker & Wolf H. Rogowski, 2022. "A Transparency Checklist for Carbon Footprint Calculations Applied within a Systematic Review of Virtual Care Interventions," IJERPH, MDPI, vol. 19(12), pages 1-14, June.
    18. Zhou, Xiaoyong & Zhou, Dequn & Wang, Qunwei, 2018. "How does information and communication technology affect China's energy intensity? A three-tier structural decomposition analysis," Energy, Elsevier, vol. 151(C), pages 748-759.
    19. Xiaoxi Zhang & Machiko Shinozuka & Yuriko Tanaka & Yuko Kanamori & Toshihiko Masui, 2022. "How ICT can contribute to realize a sustainable society in the future: a CGE approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5614-5640, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    2. Galvin, Ray, 2016. "Rebound effects from speed and acceleration in electric and internal combustion engine cars: An empirical and conceptual investigation," Applied Energy, Elsevier, vol. 172(C), pages 207-216.
    3. Broberg, Thomas & Berg, Charlotte & Samakovlis, Eva, 2015. "The economy-wide rebound effect from improved energy efficiency in Swedish industries–A general equilibrium analysis," Energy Policy, Elsevier, vol. 83(C), pages 26-37.
    4. Bakry, Walid & Nghiem, Xuan-Hoa & Farouk, Sherine & Vo, Xuan Vinh, 2023. "Does it hurt or help? Revisiting the effects of ICT on economic growth and energy consumption: A nonlinear panel ARDL approach," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 597-617.
    5. Copiello, Sergio, 2017. "Building energy efficiency: A research branch made of paradoxes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1064-1076.
    6. Baležentis, Tomas & Butkus, Mindaugas & Štreimikienė, Dalia & Shen, Zhiyang, 2021. "Exploring the limits for increasing energy efficiency in the residential sector of the European Union: Insights from the rebound effect," Energy Policy, Elsevier, vol. 149(C).
    7. Galvin, Ray, 2020. "Who co-opted our energy efficiency gains? A sociology of macro-level rebound effects and US car makers," Energy Policy, Elsevier, vol. 142(C).
    8. Galvin, Ray, 2017. "How does speed affect the rebound effect in car travel? Conceptual issues explored in case study of 900 Formula 1 Grand Prix speed trials," Energy, Elsevier, vol. 128(C), pages 28-38.
    9. repec:hal:gemwpa:hal-00991732 is not listed on IDEAS
    10. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    11. Galvin, Ray, 2015. "The rebound effect, gender and social justice: A case study in Germany," Energy Policy, Elsevier, vol. 86(C), pages 759-769.
    12. Schleich, Joachim & Mills, Bradford & Dütschke, Elisabeth, 2014. "A brighter future? Quantifying the rebound effect in energy efficient lighting," Energy Policy, Elsevier, vol. 72(C), pages 35-42.
    13. Toroghi, Shahaboddin H. & Oliver, Matthew E., 2019. "Framework for estimation of the direct rebound effect for residential photovoltaic systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Ghoddusi, Hamed & Roy, Mandira, 2017. "Supply elasticity matters for the rebound effect and its impact on policy comparisons," Energy Economics, Elsevier, vol. 67(C), pages 111-120.
    15. Copiello, Sergio & Grillenzoni, Carlo, 2017. "Is the cold the only reason why we heat our homes? Empirical evidence from spatial series data," Applied Energy, Elsevier, vol. 193(C), pages 491-506.
    16. Jarke-Neuert, Johannes & Perino, Grischa, 2020. "Energy efficiency promotion backfires under cap-and-trade," Resource and Energy Economics, Elsevier, vol. 62(C).
    17. David Font Vivanco & Jaume Freire‐González & Ray Galvin & Tilman Santarius & Hans Jakob Walnum & Tamar Makov & Serenella Sala, 2022. "Rebound effect and sustainability science: A review," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1543-1563, August.
    18. David Font Vivanco & Serenella Sala & Will McDowall, 2018. "Roadmap to Rebound: How to Address Rebound Effects from Resource Efficiency Policy," Sustainability, MDPI, vol. 10(6), pages 1-17, June.
    19. Benjamin Volland, 2016. "Efficiency in Domestic Space Heating: An Estimation of the Direct Rebound Effect for Domestic Heating in the U.S," IRENE Working Papers 16-01, IRENE Institute of Economic Research.
    20. Sondes Kahouli & Xavier Pautrel, 2020. "Residential and Industrial Energy Efficiency Improvement: A Dynamic General Equilibrium Analysis of the Rebound Effect," Working Papers 2020.28, Fondazione Eni Enrico Mattei.
    21. Wang, Zhaohua & Lu, Milin & Wang, Jian-Cai, 2014. "Direct rebound effect on urban residential electricity use: An empirical study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 124-132.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:120:y:2015:i:c:p:23-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.