IDEAS home Printed from https://ideas.repec.org/a/eee/ecanpo/v68y2020icp224-238.html
   My bibliography  Save this article

How much household electricity consumption is actually saved by replacement with Light-Emitting Diodes (LEDs)?

Author

Listed:
  • Onuma, Hiroki
  • Matsumoto, Shigeru
  • Arimura, Toshi H.

Abstract

Many countries have promoted the replacement of conventional lamps with next-generation lamps to reduce electricity usage for lighting. In Japan, the majority of the lamps sold at home appliance mass merchant shops have been changed from incandescent lamps to energy-saving lamps. All conventional lamps are planned to be replaced with light-emitting diodes (LEDs) by 2020. Although the energy-saving effect of LEDs has been stressed in many engineering studies, the amount of electricity that is actually saved by the installation of LEDs has not been examined. Using microlevel data from the Survey on Carbon Dioxide Emission from Households (SCDEH), we compare monthly electricity usage between households using conventional lamps and those using LEDs. Our empirical results demonstrate that households have reduced their electricity usage by 1.96% through past LEDization. Households can reduce their electricity usage by an additional 6.99% when LEDization is completed. The empirical results further demonstrate that middle-income households have higher price elasticity of electricity demand and are more likely to receive greater benefit from LED installation.

Suggested Citation

  • Onuma, Hiroki & Matsumoto, Shigeru & Arimura, Toshi H., 2020. "How much household electricity consumption is actually saved by replacement with Light-Emitting Diodes (LEDs)?," Economic Analysis and Policy, Elsevier, vol. 68(C), pages 224-238.
  • Handle: RePEc:eee:ecanpo:v:68:y:2020:i:c:p:224-238
    DOI: 10.1016/j.eap.2020.09.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0313592620304264
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eap.2020.09.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Leahy, Eimear & Lyons, Sean, 2010. "Energy use and appliance ownership in Ireland," Energy Policy, Elsevier, vol. 38(8), pages 4265-4279, August.
    2. Nair, Gireesh & Gustavsson, Leif & Mahapatra, Krushna, 2010. "Factors influencing energy efficiency investments in existing Swedish residential buildings," Energy Policy, Elsevier, vol. 38(6), pages 2956-2963, June.
    3. Mills, Bradford F. & Schleich, Joachim, 2010. "Why don't households see the light?: Explaining the diffusion of compact fluorescent lamps," Resource and Energy Economics, Elsevier, vol. 32(3), pages 363-378, August.
    4. Baker, Paul & Blundell, Richard, 1991. "The Microeconometric Approach to Modelling Energy Demand: Some Results for UK Households," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 7(2), pages 54-76, Summer.
    5. Elisha R. Frederiks & Karen Stenner & Elizabeth V. Hobman, 2015. "The Socio-Demographic and Psychological Predictors of Residential Energy Consumption: A Comprehensive Review," Energies, MDPI, vol. 8(1), pages 1-37, January.
    6. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    7. Michael Parti & Cynthia Parti, 1980. "The Total and Appliance-Specific Conditional Demand for Electricity in the Household Sector," Bell Journal of Economics, The RAND Corporation, vol. 11(1), pages 309-321, Spring.
    8. Toshi H. Arimura & Kazuyuki Iwata & Hajime Katayama & Mari Sakudo, 2018. "Seemingly Unrelated Interventions:Environmental Management Systems in the Workplace and Energy Conservation Behaviors at Home," RIEEM Discussion Paper Series 1802, Research Institute for Environmental Economics and Management, Waseda University.
    9. Giles, David E. A., 1982. "The interpretation of dummy variables in semilogarithmic equations : Unbiased estimation," Economics Letters, Elsevier, vol. 10(1-2), pages 77-79.
    10. Espey, James A. & Espey, Molly, 2004. "Turning on the Lights: A Meta-Analysis of Residential Electricity Demand Elasticities," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 36(1), pages 65-81, April.
    11. Helena Meier, Tooraj Jamasb, and Luis Orea, 2013. "Necessity or Luxury Good? Household Energy Spending and Income in Britain 1991-2007," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    12. Halvorsen, Robert & Palmquist, Raymond, 1980. "The Interpretation of Dummy Variables in Semilogarithmic Equations," American Economic Review, American Economic Association, vol. 70(3), pages 474-475, June.
    13. Newsham, Guy R. & Donnelly, Cara L., 2013. "A model of residential energy end-use in Canada: Using conditional demand analysis to suggest policy options for community energy planners," Energy Policy, Elsevier, vol. 59(C), pages 133-142.
    14. Kenneth Gillingham & Richard G. Newell & Karen Palmer, 2009. "Energy Efficiency Economics and Policy," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 597-620, September.
    15. Kennedy, Peter E, 1981. "Estimation with Correctly Interpreted Dummy Variables in Semilogarithmic Equations [The Interpretation of Dummy Variables in Semilogarithmic Equations]," American Economic Review, American Economic Association, vol. 71(4), pages 801-801, September.
    16. Baker, Paul & Blundell, Richard & Micklewright, John, 1989. "Modelling Household Energy Expenditures Using Micro-data," Economic Journal, Royal Economic Society, vol. 99(397), pages 720-738, September.
    17. Chitnis, Mona & Sorrell, Steve, 2015. "Living up to expectations: Estimating direct and indirect rebound effects for UK households," Energy Economics, Elsevier, vol. 52(S1), pages 100-116.
    18. Dennis J. Aigner & Cynts Sorooshian & Pamela Kerwin, 1984. "Conditional Demand Analysis for Estimating Residential End-Use Load Profiles," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 81-98.
    19. Poortinga, Wouter & Steg, Linda & Vlek, Charles & Wiersma, Gerwin, 2003. "Household preferences for energy-saving measures: A conjoint analysis," Journal of Economic Psychology, Elsevier, vol. 24(1), pages 49-64, February.
    20. Schulte, Isabella & Heindl, Peter, 2017. "Price and income elasticities of residential energy demand in Germany," Energy Policy, Elsevier, vol. 102(C), pages 512-528.
    21. Nesbakken, Runa, 1999. "Price sensitivity of residential energy consumption in Norway," Energy Economics, Elsevier, vol. 21(6), pages 493-515, December.
    22. Chitnis, Mona & Sorrell, Steve & Druckman, Angela & Firth, Steven K. & Jackson, Tim, 2013. "Turning lights into flights: Estimating direct and indirect rebound effects for UK households," Energy Policy, Elsevier, vol. 55(C), pages 234-250.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inoue, Nozomu & Matsumoto, Shigeru, 2019. "An examination of losses in energy savings after the Japanese Top Runner Program?," Energy Policy, Elsevier, vol. 124(C), pages 312-319.
    2. Salomé Bakaloglou and Dorothée Charlier, 2019. "Energy Consumption in the French Residential Sector: How Much do Individual Preferences Matter?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    3. Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Energy Policy, Elsevier, vol. 107(C), pages 82-95.
    4. Dorothee Charlier and Sondes Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    5. Anna Risch & Claire Salmon, 2017. "What matters in residential energy consumption: evidence from France," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 40(1/2), pages 79-116.
    6. Dorothée CHARLIER & Mouez FODHA & Djamel KIRAT, 2021. "CO2 Emissions from the Residential Sector in Europe: Some Insights form a Country-Level Assessment," LEO Working Papers / DR LEO 2849, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    7. Cao, Jing & Ho, Mun Sing & Li, Yating & Newell, Richard G. & Pizer, William A., 2019. "Chinese residential electricity consumption: Estimation and forecast using micro-data," Resource and Energy Economics, Elsevier, vol. 56(C), pages 6-27.
    8. Dorothée Charlier & Sondès Kahouli, 2018. "Fuel poverty and residential energy demand: how fuel-poor households react to energy price fluctuations," Post-Print halshs-01957771, HAL.
    9. Shigeru Matsumoto, 2015. "Electric Appliance Ownership and Usage: Application of Conditional Demand Analysis to Japanese Household Data," Proceedings of International Academic Conferences 3105452, International Institute of Social and Economic Sciences.
    10. Matsumoto, Shigeru, 2016. "How do household characteristics affect appliance usage? Application of conditional demand analysis to Japanese household data," Energy Policy, Elsevier, vol. 94(C), pages 214-223.
    11. Bakaloglou, Salomé & Charlier, Dorothée, 2021. "The role of individual preferences in explaining the energy performance gap," Energy Economics, Elsevier, vol. 104(C).
    12. Dong, Xiao & Klaiber, H. Allen, 2019. "Consumer stockpiling in response to the U.S. EISA “light bulb ban”," Energy Economics, Elsevier, vol. 81(C), pages 566-576.
    13. Kostakis, Ioannis & Lolos, Sarantis & Sardianou, Eleni, 2021. "Residential natural gas demand: Assessing the evidence from Greece using pseudo-panels, 2012–2019," Energy Economics, Elsevier, vol. 99(C).
    14. Romero-Jordán, Desiderio & del Río, Pablo & Peñasco, Cristina, 2016. "An analysis of the welfare and distributive implications of factors influencing household electricity consumption," Energy Policy, Elsevier, vol. 88(C), pages 361-370.
    15. Ouyang, Xiaoling & Gao, Beiying & Du, Kerui & Du, Gang, 2018. "Industrial sectors' energy rebound effect: An empirical study of Yangtze River Delta urban agglomeration," Energy, Elsevier, vol. 145(C), pages 408-416.
    16. Meier, Helena & Rehdanz, Katrin, 2010. "Determinants of residential space heating expenditures in Great Britain," Energy Economics, Elsevier, vol. 32(5), pages 949-959, September.
    17. Hendrik Schmitz & Reinhard Madlener, 2020. "Heterogeneity in price responsiveness for residential space heating in Germany," Empirical Economics, Springer, vol. 59(5), pages 2255-2281, November.
    18. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    19. repec:hal:gemwpa:hal-00991732 is not listed on IDEAS
    20. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    21. Farrell, Niall, 2021. "The increasing cost of ignoring Coase: Inefficient electricity tariffs, welfare loss and welfare-reducing technological change," Energy Economics, Elsevier, vol. 97(C).

    More about this item

    Keywords

    Energy saving; Household electricity usage; LEDization; Microlevel data;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecanpo:v:68:y:2020:i:c:p:224-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/economic-analysis-and-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.