IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v307y2022ics0306261921015294.html
   My bibliography  Save this article

Renewable energy portfolio optimization with public participation under uncertainty: A hybrid multi-attribute multi-objective decision-making method

Author

Listed:
  • Zhang, Zhiying
  • Liao, Huchang
  • Tang, Anbin

Abstract

With the demand for energy increasing rapidly, the public is increasingly concerned about renewable energy (RE) planning. However, existing studies on RE planning rarely involved public opinions in the decision-making process. This study devotes to introducing a multi-attribute multi-objective decision-making model for RE portfolio selection with public participation. First, to reduce the complexity of the problem resulted from many participators, a linguistic risk appetite-based method is adopted to classify the public into subgroups. Considering that public opinions may be incomplete, the evidential reasoning approach is then used to aggregate the opinions of individuals within a subgroup. Next, the stochastic multi-attribute acceptability analysis method is applied to aggregate the preferences among subgroups and further derive a robust result regarding the public’s social acceptance of RE technologies. On the basis of the derived social acceptance, a risk-based fuzzy interval goal programming model is proposed to derive the optimal RE portfolio. Finally, an illustrative case of optimizing RE portfolios is given to demonstrate the applicability of the proposed model.

Suggested Citation

  • Zhang, Zhiying & Liao, Huchang & Tang, Anbin, 2022. "Renewable energy portfolio optimization with public participation under uncertainty: A hybrid multi-attribute multi-objective decision-making method," Applied Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921015294
    DOI: 10.1016/j.apenergy.2021.118267
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921015294
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118267?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akbari, Negar & Jones, Dylan & Arabikhan, Farzad, 2021. "Goal programming models with interval coefficients for the sustainable selection of marine renewable energy projects in the UK," European Journal of Operational Research, Elsevier, vol. 293(2), pages 748-760.
    2. Wu, Yunna & Zhang, Ting & Gao, Rui & Wu, Chenghao, 2021. "Portfolio planning of renewable energy with energy storage technologies for different applications from electricity grid," Applied Energy, Elsevier, vol. 287(C).
    3. Robert L. Smith, 1984. "Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions," Operations Research, INFORMS, vol. 32(6), pages 1296-1308, December.
    4. F. Hutton Barron & Bruce E. Barrett, 1996. "Decision Quality Using Ranked Attribute Weights," Management Science, INFORMS, vol. 42(11), pages 1515-1523, November.
    5. Tervonen, Tommi & van Valkenhoef, Gert & Baştürk, Nalan & Postmus, Douwe, 2013. "Hit-And-Run enables efficient weight generation for simulation-based multiple criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 224(3), pages 552-559.
    6. Hocine, Amin & Zhuang, Zheng-Yun & Kouaissah, Noureddine & Li, Der-Chiang, 2020. "Weighted-additive fuzzy multi-choice goal programming (WA-FMCGP) for supporting renewable energy site selection decisions," European Journal of Operational Research, Elsevier, vol. 285(2), pages 642-654.
    7. Oree, Vishwamitra & Sayed Hassen, Sayed Z. & Fleming, Peter J., 2017. "Generation expansion planning optimisation with renewable energy integration: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 790-803.
    8. Ullah, Zia & Elkadeem, M.R. & Kotb, Kotb M. & Taha, Ibrahim B.M. & Wang, Shaorong, 2021. "Multi-criteria decision-making model for optimal planning of on/off grid hybrid solar, wind, hydro, biomass clean electricity supply," Renewable Energy, Elsevier, vol. 179(C), pages 885-910.
    9. Zhou, Wei & Xu, Zeshui, 2016. "Generalized asymmetric linguistic term set and its application to qualitative decision making involving risk appetites," European Journal of Operational Research, Elsevier, vol. 254(2), pages 610-621.
    10. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    11. Li, Tao & Li, Ang & Guo, Xiaopeng, 2020. "The sustainable development-oriented development and utilization of renewable energy industry——A comprehensive analysis of MCDM methods," Energy, Elsevier, vol. 212(C).
    12. Yang, Feng & Ang, Sheng & Xia, Qiong & Yang, Chenchen, 2012. "Ranking DMUs by using interval DEA cross efficiency matrix with acceptability analysis," European Journal of Operational Research, Elsevier, vol. 223(2), pages 483-488.
    13. Tang, Ming & Liao, Huchang, 2021. "Multi-attribute large-scale group decision making with data mining and subgroup leaders: An application to the development of the circular economy," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    14. Lahdelma, Risto & Hokkanen, Joonas & Salminen, Pekka, 1998. "SMAA - Stochastic multiobjective acceptability analysis," European Journal of Operational Research, Elsevier, vol. 106(1), pages 137-143, April.
    15. Cosic, Armin & Stadler, Michael & Mansoor, Muhammad & Zellinger, Michael, 2021. "Mixed-integer linear programming based optimization strategies for renewable energy communities," Energy, Elsevier, vol. 237(C).
    16. M. A. Yaghoobi & D. F. Jones & M. Tamiz, 2008. "Weighted Additive Models For Solving Fuzzy Goal Programming Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 25(05), pages 715-733.
    17. Deveci, Kaan & Güler, Önder, 2020. "A CMOPSO based multi-objective optimization of renewable energy planning: Case of Turkey," Renewable Energy, Elsevier, vol. 155(C), pages 578-590.
    18. van Valkenhoef, Gert & Tervonen, Tommi & Postmus, Douwe, 2014. "Notes on ‘Hit-And-Run enables efficient weight generation for simulation-based multiple criteria decision analysis’," European Journal of Operational Research, Elsevier, vol. 239(3), pages 865-867.
    19. Oluoch, Sydney & Lal, Pankaj & Susaeta, Andres & Wolde, Bernabas, 2021. "Public preferences for renewable energy options: A choice experiment in Kenya," Energy Economics, Elsevier, vol. 98(C).
    20. Bortoluzzi, Mirian & Correia de Souza, Celso & Furlan, Marcelo, 2021. "Bibliometric analysis of renewable energy types using key performance indicators and multicriteria decision models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    21. Jung, Nusrat & Moula, Munjur E. & Fang, Tingting & Hamdy, Mohamed & Lahdelma, Risto, 2016. "Social acceptance of renewable energy technologies for buildings in the Helsinki Metropolitan Area of Finland," Renewable Energy, Elsevier, vol. 99(C), pages 813-824.
    22. Risto Lahdelma & Pekka Salminen, 2001. "SMAA-2: Stochastic Multicriteria Acceptability Analysis for Group Decision Making," Operations Research, INFORMS, vol. 49(3), pages 444-454, June.
    23. Chang, Ching-Ter, 2015. "Multi-choice goal programming model for the optimal location of renewable energy facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 379-389.
    24. Hocine, Amine & Kouaissah, Noureddine & Bettahar, Samir & Benbouziane, Mohamed, 2018. "Optimizing renewable energy portfolios under uncertainty: A multi-segment fuzzy goal programming approach," Renewable Energy, Elsevier, vol. 129(PA), pages 540-552.
    25. Xingli Wu & Huchang Liao, 2021. "Learning judgment benchmarks of customers from online reviews," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 1125-1157, December.
    26. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Khalifah, Zainab & Zakuan, Norhayati & Jusoh, Ahmad & Nor, Khalil Md & Khoshnoudi, Masoumeh, 2017. "A review of multi-criteria decision-making applications to solve energy management problems: Two decades from 1995 to 2015," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 216-256.
    27. Cayir Ervural, Beyzanur & Evren, Ramazan & Delen, Dursun, 2018. "A multi-objective decision-making approach for sustainable energy investment planning," Renewable Energy, Elsevier, vol. 126(C), pages 387-402.
    28. Alizadeh, Reza & Soltanisehat, Leili & Lund, Peter D. & Zamanisabzi, Hamed, 2020. "Improving renewable energy policy planning and decision-making through a hybrid MCDM method," Energy Policy, Elsevier, vol. 137(C).
    29. Ediger, Volkan Ş. & Kirkil, Gokhan & Çelebi, Emre & Ucal, Meltem & Kentmen-Çin, Çiğdem, 2018. "Turkish public preferences for energy," Energy Policy, Elsevier, vol. 120(C), pages 492-502.
    30. Chang, Ching-Ter, 2007. "Multi-choice goal programming," Omega, Elsevier, vol. 35(4), pages 389-396, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Limei Liu & Xinyun Chen & Yi Yang & Junfeng Yang & Jie Chen, 2023. "Prioritization of Off-Grid Hybrid Renewable Energy Systems for Residential Communities in China Considering Public Participation with Basic Uncertain Linguistic Information," Sustainability, MDPI, vol. 15(11), pages 1-30, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gezen, Mesliha & Karaaslan, Abdulkerim, 2022. "Energy planning based on Vision-2023 of Turkey with a goal programming under fuzzy multi-objectives," Energy, Elsevier, vol. 261(PA).
    2. R. Pelissari & M. C. Oliveira & S. Ben Amor & A. Kandakoglu & A. L. Helleno, 2020. "SMAA methods and their applications: a literature review and future research directions," Annals of Operations Research, Springer, vol. 293(2), pages 433-493, October.
    3. Silvia Angilella & Maria Rosaria Pappalardo, 2022. "Performance assessment of energy companies employing Hierarchy Stochastic Multi-Attribute Acceptability Analysis," Operational Research, Springer, vol. 22(1), pages 299-370, March.
    4. Karaaslan, Abdulkerim & Gezen, Mesliha, 2022. "The evaluation of renewable energy resources in Turkey by integer multi-objective selection problem with interval coefficient," Renewable Energy, Elsevier, vol. 182(C), pages 842-854.
    5. Horasan, Muhammed Bilal & Kilic, Huseyin Selcuk, 2022. "A multi-objective decision-making model for renewable energy planning: The case of Turkey," Renewable Energy, Elsevier, vol. 193(C), pages 484-504.
    6. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    7. Ciomek, Krzysztof & Kadziński, Miłosz & Tervonen, Tommi, 2017. "Heuristics for prioritizing pair-wise elicitation questions with additive multi-attribute value models," Omega, Elsevier, vol. 71(C), pages 27-45.
    8. Ciomek, Krzysztof & Kadziński, Miłosz & Tervonen, Tommi, 2017. "Heuristics for selecting pair-wise elicitation questions in multiple criteria choice problems," European Journal of Operational Research, Elsevier, vol. 262(2), pages 693-707.
    9. Vetschera, Rudolf, 2017. "Deriving rankings from incomplete preference information: A comparison of different approaches," European Journal of Operational Research, Elsevier, vol. 258(1), pages 244-253.
    10. Liu, Jiapeng & Liao, Xiuwu & Huang, Wei & Liao, Xianzhao, 2019. "Market segmentation: A multiple criteria approach combining preference analysis and segmentation decision," Omega, Elsevier, vol. 83(C), pages 1-13.
    11. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore & Słowiński, Roman, 2016. "Robust Ordinal Regression and Stochastic Multiobjective Acceptability Analysis in multiple criteria hierarchy process for the Choquet integral preference model," Omega, Elsevier, vol. 63(C), pages 154-169.
    12. Akbari, Negar & Jones, Dylan & Arabikhan, Farzad, 2021. "Goal programming models with interval coefficients for the sustainable selection of marine renewable energy projects in the UK," European Journal of Operational Research, Elsevier, vol. 293(2), pages 748-760.
    13. Costa, Ana Sara & Corrente, Salvatore & Greco, Salvatore & Figueira, José Rui & Borbinha, José, 2020. "A robust hierarchical nominal multicriteria classification method based on similarity and dissimilarity," European Journal of Operational Research, Elsevier, vol. 286(3), pages 986-1001.
    14. Yang Ding & Yelin Fu & Kin Keung Lai & W. K. John Leung, 2018. "Using Ranked Weights and Acceptability Analysis to Construct Composite Indicators: A Case Study of Regional Sustainable Society Index," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 139(3), pages 871-885, October.
    15. Durbach, Ian N. & Calder, Jon M., 2016. "Modelling uncertainty in stochastic multicriteria acceptability analysis," Omega, Elsevier, vol. 64(C), pages 13-23.
    16. Silvia Angilella & Sally Giuseppe Arcidiacono & Salvatore Corrente & Salvatore Greco & Benedetto Matarazzo, 2020. "An application of the SMAA–Choquet method to evaluate the performance of sailboats in offshore regattas," Operational Research, Springer, vol. 20(2), pages 771-793, June.
    17. Song, Lianlian & Fu, Yelin & Zhou, Peng & Lai, Kin Keung, 2017. "Measuring national energy performance via Energy Trilemma Index: A Stochastic Multicriteria Acceptability Analysis," Energy Economics, Elsevier, vol. 66(C), pages 313-319.
    18. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore & Słowiński, Roman, 2017. "A robust ranking method extending ELECTRE III to hierarchy of interacting criteria, imprecise weights and stochastic analysis," Omega, Elsevier, vol. 73(C), pages 1-17.
    19. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore, 2015. "Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 172-182.
    20. Corrente, S. & Figueira, J.R. & Greco, S., 2021. "Pairwise comparison tables within the deck of cards method in multiple criteria decision aiding," European Journal of Operational Research, Elsevier, vol. 291(2), pages 738-756.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:307:y:2022:i:c:s0306261921015294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.