IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v285y2020i2p642-654.html
   My bibliography  Save this article

Weighted-additive fuzzy multi-choice goal programming (WA-FMCGP) for supporting renewable energy site selection decisions

Author

Listed:
  • Hocine, Amin
  • Zhuang, Zheng-Yun
  • Kouaissah, Noureddine
  • Li, Der-Chiang

Abstract

This paper proposes a novel weighted-additive fuzzy multi-choice goal programming (WA-FMCGP) model for the imprecise decision context wherein several conflicting goals are present but each goal has multiple-choice aspiration levels (MCALs) and, around them, the fuzzinesses are expressed in terms of membership functions (MFs). The main contribution of this model is its use of an objective function that minimises the weighted-additive summation of the normalised deviations; thus, the model can adopt any minimisation process from any goal programming (GP) variant. The advantages of this FGP-MCGP (fuzzy GP – multi-choice GP) model are shown by using it to solve a numerical example from F-MODM (fuzzy MODM) literature and comparing the results with those of a recent FP-MCGP (fuzzy programming – multi-choice GP) study. The application of the model is also verified using real data (i.e., it can model and support renewable energy site selection (RESS) where the decision context is imprecise). As WA-FMCGP is largely a MODM model, through its application, this study also provides a supplementary method in contrast to the multi-attribute decision-making (MADM) model applications used thus far for RESS.

Suggested Citation

  • Hocine, Amin & Zhuang, Zheng-Yun & Kouaissah, Noureddine & Li, Der-Chiang, 2020. "Weighted-additive fuzzy multi-choice goal programming (WA-FMCGP) for supporting renewable energy site selection decisions," European Journal of Operational Research, Elsevier, vol. 285(2), pages 642-654.
  • Handle: RePEc:eee:ejores:v:285:y:2020:i:2:p:642-654
    DOI: 10.1016/j.ejor.2020.02.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720301272
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.02.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Belaid Aouni & Fouad Ben Abdelaziz & Davide La Torre, 2012. "The stochastic goal programming model: Theory and applications," Post-Print hal-00778729, HAL.
    2. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    3. Wang, Jiang-Jiang & Jing, You-Yin & Zhang, Chun-Fa & Zhao, Jun-Hong, 2009. "Review on multi-criteria decision analysis aid in sustainable energy decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2263-2278, December.
    4. Tsionas, Mike G., 2019. "Multi-objective optimization using statistical models," European Journal of Operational Research, Elsevier, vol. 276(1), pages 364-378.
    5. Helenice de Oliveira Florentino & Chandra Irawan & Angelo Filho Aliano & Dylan F. Jones & Daniela Renata Cantane & Jonis Jecks Nervis, 2018. "A multiple objective methodology for sugarcane harvest management with varying maturation periods," Annals of Operations Research, Springer, vol. 267(1), pages 153-177, August.
    6. JosÉ Figueira & Salvatore Greco & Matthias Ehrogott, 2005. "Multiple Criteria Decision Analysis: State of the Art Surveys," International Series in Operations Research and Management Science, Springer, number 978-0-387-23081-8, December.
    7. Rodriguez Uria, M. Victoria & Caballero, Rafael & Ruiz, Francisco & Romero, Carlos, 2002. "Meta-goal programming," European Journal of Operational Research, Elsevier, vol. 136(2), pages 422-429, January.
    8. Yaghoobi, M.A. & Tamiz, M., 2007. "A method for solving fuzzy goal programming problems based on MINMAX approach," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1580-1590, March.
    9. Chang, Ching-Ter, 2011. "Multi-choice goal programming with utility functions," European Journal of Operational Research, Elsevier, vol. 215(2), pages 439-445, December.
    10. Ali Emrouznejad & Marianna Marra, 2017. "The state of the art development of AHP (1979–2017): a literature review with a social network analysis," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6653-6675, November.
    11. M. A. Yaghoobi & D. F. Jones & M. Tamiz, 2008. "Weighted Additive Models For Solving Fuzzy Goal Programming Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 25(05), pages 715-733.
    12. Yaghoobi, M.A. & Tamiz, M., 2007. "A note on article "A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function"," European Journal of Operational Research, Elsevier, vol. 176(1), pages 636-640, January.
    13. Zheng-Yun Zhuang & Shu-Chin Chang, 2017. "Deciding product mix based on time-driven activity-based costing by mixed integer programming," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 959-974, April.
    14. Dylan Jones & Mehrdad Tamiz, 2010. "Practical Goal Programming," International Series in Operations Research and Management Science, Springer, edition 1, number 978-1-4419-5771-9, December.
    15. Romero, Carlos, 2004. "A general structure of achievement function for a goal programming model," European Journal of Operational Research, Elsevier, vol. 153(3), pages 675-686, March.
    16. Craig W. Kirkwood, 1992. "Estimating the Impact of Uncertainty on a Deterministic Multiattribute Evaluation," Management Science, INFORMS, vol. 38(6), pages 819-826, June.
    17. Hocine, Amine, 2018. "Meta goal programing approach for solving multi-criteria de Novo programing problemAuthor-Name: Zhuang, Zheng-Yun," European Journal of Operational Research, Elsevier, vol. 265(1), pages 228-238.
    18. Chen, Liang-Hsuan & Tsai, Feng-Chou, 2001. "Fuzzy goal programming with different importance and priorities," European Journal of Operational Research, Elsevier, vol. 133(3), pages 548-556, September.
    19. Himri, Y. & Malik, Arif S. & Boudghene Stambouli, A. & Himri, S. & Draoui, B., 2009. "Review and use of the Algerian renewable energy for sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1584-1591, August.
    20. Pal, Bijay Baran & Nath Moitra, Bhola, 2003. "A goal programming procedure for solving problems with multiple fuzzy goals using dynamic programming," European Journal of Operational Research, Elsevier, vol. 144(3), pages 480-491, February.
    21. Chang, Ching-Ter, 2015. "Multi-choice goal programming model for the optimal location of renewable energy facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 379-389.
    22. Tamiz, Mehrdad & Jones, Dylan & Romero, Carlos, 1998. "Goal programming for decision making: An overview of the current state-of-the-art," European Journal of Operational Research, Elsevier, vol. 111(3), pages 569-581, December.
    23. Jones, Dylan & Jimenez, Mariano, 2013. "Incorporating additional meta-objectives into the extended lexicographic goal programming framework," European Journal of Operational Research, Elsevier, vol. 227(2), pages 343-349.
    24. Romero, Carlos, 2001. "Extended lexicographic goal programming: a unifying approach," Omega, Elsevier, vol. 29(1), pages 63-71, February.
    25. Kim, Jong Soon & Whang, Kyu-Seung, 1998. "A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function," European Journal of Operational Research, Elsevier, vol. 107(3), pages 614-624, June.
    26. Moradi Afrapoli, Ali & Tabesh, Mohammad & Askari-Nasab, Hooman, 2019. "A multiple objective transportation problem approach to dynamic truck dispatching in surface mines," European Journal of Operational Research, Elsevier, vol. 276(1), pages 331-342.
    27. Chang, Ching-Ter, 2007. "Multi-choice goal programming," Omega, Elsevier, vol. 35(4), pages 389-396, August.
    28. Chellali, Farouk & Khellaf, Adballah & Belouchrani, Adel & Recioui, Abdelmadjid, 2011. "A contribution in the actualization of wind map of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 993-1002, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gang Lin & Honglei Xu & Shaoli Wang & Conghua Lin & Chenyu Huang, 2022. "Performance Optimisation of Public Transport Networks Using AHP-Dependent Multi-Aspiration-Level Goal Programming," Energies, MDPI, vol. 15(17), pages 1-16, September.
    2. Yu-Jwo Tao & Yi-Shyuan Lin & Hsuan-Shih Lee & Guo-Ya Gan & Chang-Shu Tu, 2022. "Using a Product Life Cycle Cost Model to Solve Supplier Selection Problems in a Sustainable, Resilient Supply Chain," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    3. Zhang, Zhiying & Liao, Huchang & Tang, Anbin, 2022. "Renewable energy portfolio optimization with public participation under uncertainty: A hybrid multi-attribute multi-objective decision-making method," Applied Energy, Elsevier, vol. 307(C).
    4. Zhong, Zhiming & Fan, Neng & Wu, Lei, 2023. "A hybrid robust-stochastic optimization approach for day-ahead scheduling of cascaded hydroelectric system in restructured electricity market," European Journal of Operational Research, Elsevier, vol. 306(2), pages 909-926.
    5. Gezen, Mesliha & Karaaslan, Abdulkerim, 2022. "Energy planning based on Vision-2023 of Turkey with a goal programming under fuzzy multi-objectives," Energy, Elsevier, vol. 261(PA).
    6. Karaaslan, Abdulkerim & Gezen, Mesliha, 2022. "The evaluation of renewable energy resources in Turkey by integer multi-objective selection problem with interval coefficient," Renewable Energy, Elsevier, vol. 182(C), pages 842-854.
    7. Zheng-Yun Zhuang & Chi-Kit Ho & Paul Juinn Bing Tan & Jia-Ming Ying & Jin-Hua Chen, 2020. "The Optimal Setting of A/B Exam Papers without Item Pools: A Hybrid Approach of IRT and BGP," Mathematics, MDPI, vol. 8(8), pages 1-29, August.
    8. Almaktar, Mohamed & Shaaban, Mohamed, 2021. "Prospects of renewable energy as a non-rivalry energy alternative in Libya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Konstantinos Kokkinos & Vayos Karayannis, 2020. "Supportiveness of Low-Carbon Energy Technology Policy Using Fuzzy Multicriteria Decision-Making Methodologies," Mathematics, MDPI, vol. 8(7), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hocine, Amine & Kouaissah, Noureddine & Bettahar, Samir & Benbouziane, Mohamed, 2018. "Optimizing renewable energy portfolios under uncertainty: A multi-segment fuzzy goal programming approach," Renewable Energy, Elsevier, vol. 129(PA), pages 540-552.
    2. Hocine, Amine, 2018. "Meta goal programing approach for solving multi-criteria de Novo programing problemAuthor-Name: Zhuang, Zheng-Yun," European Journal of Operational Research, Elsevier, vol. 265(1), pages 228-238.
    3. Chang, Ching-Ter, 2011. "Multi-choice goal programming with utility functions," European Journal of Operational Research, Elsevier, vol. 215(2), pages 439-445, December.
    4. Zheng, Xiao-Xue & Chang, Ching-Ter, 2021. "Topology design of remote patient monitoring system concerning qualitative and quantitative issues," Omega, Elsevier, vol. 98(C).
    5. Nurullah Umarusman, 2018. "Fuzzy Goal Programming Problem Based on Minmax Approach for Optimal System Design," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 6(1), pages 177-192, June.
    6. Chang, Ching-Ter & Chung, Cheng-Kung & Sheu, Jiuh-Biing & Zhuang, Zheng-Yun & Chen, Huang-Mu, 2014. "The optimal dual-pricing policy of mall parking service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 223-243.
    7. Bilbao-Terol, Amelia & Arenas-Parra, Mar & Cañal-Fernández, Verónica, 2016. "A model based on Copula Theory for sustainable and social responsible investments," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 19(1), pages 55-76.
    8. David Kik & Matthias Gerhard Wichmann & Thomas Stefan Spengler, 2022. "Decision support framework for the regional facility location and development planning problem," Journal of Business Economics, Springer, vol. 92(1), pages 115-157, January.
    9. Zheng-Yun Zhuang & Chi-Kit Ho & Paul Juinn Bing Tan & Jia-Ming Ying & Jin-Hua Chen, 2020. "The Optimal Setting of A/B Exam Papers without Item Pools: A Hybrid Approach of IRT and BGP," Mathematics, MDPI, vol. 8(8), pages 1-29, August.
    10. Yaghoobi, M.A. & Tamiz, M., 2007. "A method for solving fuzzy goal programming problems based on MINMAX approach," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1580-1590, March.
    11. Jones, Dylan & Florentino, Helenice & Cantane, Daniela & Oliveira, Rogerio, 2016. "An extended goal programming methodology for analysis of a network encompassing multiple objectives and stakeholders," European Journal of Operational Research, Elsevier, vol. 255(3), pages 845-855.
    12. Jones, Dylan & Jimenez, Mariano, 2013. "Incorporating additional meta-objectives into the extended lexicographic goal programming framework," European Journal of Operational Research, Elsevier, vol. 227(2), pages 343-349.
    13. Mila Bravo & Dylan Jones & David Pla-Santamaria & Graham Wall, 2018. "Robustness of weighted goal programming models: an analytical measure and its application to offshore wind-farm site selection in United Kingdom," Annals of Operations Research, Springer, vol. 267(1), pages 65-79, August.
    14. Gezen, Mesliha & Karaaslan, Abdulkerim, 2022. "Energy planning based on Vision-2023 of Turkey with a goal programming under fuzzy multi-objectives," Energy, Elsevier, vol. 261(PA).
    15. Chang, Ching-Ter, 2007. "Binary fuzzy goal programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 29-37, July.
    16. Jones, Dylan, 2011. "A practical weight sensitivity algorithm for goal and multiple objective programming," European Journal of Operational Research, Elsevier, vol. 213(1), pages 238-245, August.
    17. Şeyda Gür & Tamer Eren, 2018. "Scheduling and Planning in Service Systems with Goal Programming: Literature Review," Mathematics, MDPI, vol. 6(11), pages 1-16, November.
    18. Cinzia Colapinto & Raja Jayaraman & Simone Marsiglio, 2017. "Multi-criteria decision analysis with goal programming in engineering, management and social sciences: a state-of-the art review," Annals of Operations Research, Springer, vol. 251(1), pages 7-40, April.
    19. Shalabh Singh & Sonia Singh, 2022. "Shipment in a multi-choice environment: a case study of shipping carriers in US," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(4), pages 1195-1219, December.
    20. Amelia Bilbao-Terol & Mariano Jiménez & Mar Arenas-Parra, 2016. "A group decision making model based on goal programming with fuzzy hierarchy: an application to regional forest planning," Annals of Operations Research, Springer, vol. 245(1), pages 137-162, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:285:y:2020:i:2:p:642-654. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.