IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v227y2013i2p343-349.html
   My bibliography  Save this article

Incorporating additional meta-objectives into the extended lexicographic goal programming framework

Author

Listed:
  • Jones, Dylan
  • Jimenez, Mariano

Abstract

This paper introduces two new meta-objectives into the extended goal programming framework. The first meta-objective is the number of unmet goals and the second is a measure of closeness to the pairwise comparisons given by the decision maker. These complement the original two meta-objectives of the weighted sum of deviations and the maximal weighted deviation to provide a flexible four meta-objective framework. Lexicographic and non-lexicographic representations of the framework are developed. An example relating to transportation is solved in both the lexicographic and non-lexicographic forms. Weight sensitivity analysis is applied to the meta-weight parameters for the non-lexicographic case in order to find a range of available distinct solutions.

Suggested Citation

  • Jones, Dylan & Jimenez, Mariano, 2013. "Incorporating additional meta-objectives into the extended lexicographic goal programming framework," European Journal of Operational Research, Elsevier, vol. 227(2), pages 343-349.
  • Handle: RePEc:eee:ejores:v:227:y:2013:i:2:p:343-349
    DOI: 10.1016/j.ejor.2012.12.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712009733
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.12.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Flavell, RB, 1976. "A new goal programming formulation," Omega, Elsevier, vol. 4(6), pages 731-732.
    2. Rodriguez Uria, M. Victoria & Caballero, Rafael & Ruiz, Francisco & Romero, Carlos, 2002. "Meta-goal programming," European Journal of Operational Research, Elsevier, vol. 136(2), pages 422-429, January.
    3. Dylan Jones & Mehrdad Tamiz, 2010. "Practical Goal Programming," International Series in Operations Research and Management Science, Springer, edition 1, number 978-1-4419-5771-9, December.
    4. Romero, Carlos, 2004. "A general structure of achievement function for a goal programming model," European Journal of Operational Research, Elsevier, vol. 153(3), pages 675-686, March.
    5. Deparis, Stéphane & Mousseau, Vincent & Öztürk, Meltem & Pallier, Christophe & Huron, Caroline, 2012. "When conflict induces the expression of incomplete preferences," European Journal of Operational Research, Elsevier, vol. 221(3), pages 593-602.
    6. Jones, Dylan, 2011. "A practical weight sensitivity algorithm for goal and multiple objective programming," European Journal of Operational Research, Elsevier, vol. 213(1), pages 238-245, August.
    7. Romero, Carlos, 2001. "Extended lexicographic goal programming: a unifying approach," Omega, Elsevier, vol. 29(1), pages 63-71, February.
    8. de Andrés, Rocío & García-Lapresta, José Luis & González-Pachón, Jacinto, 2010. "Performance appraisal based on distance function methods," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1599-1607, December.
    9. Kazemzadeh, Reza B. & Bashiri, Mahdi & Atkinson, Anthony C. & Noorossana, Rassoul, 2008. "A general framework for multiresponse optimization problems based on goal programming," European Journal of Operational Research, Elsevier, vol. 189(2), pages 421-429, September.
    10. Jones, D.F. & Collins, A. & Hand, C., 2007. "A classification model based on goal programming with non-standard preference functions with application to the prediction of cinema-going behaviour," European Journal of Operational Research, Elsevier, vol. 177(1), pages 515-524, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dylan F. Jones & Graham Wall, 2016. "An extended goal programming model for site selection in the offshore wind farm sector," Annals of Operations Research, Springer, vol. 245(1), pages 121-135, October.
    2. Hocine, Amin & Zhuang, Zheng-Yun & Kouaissah, Noureddine & Li, Der-Chiang, 2020. "Weighted-additive fuzzy multi-choice goal programming (WA-FMCGP) for supporting renewable energy site selection decisions," European Journal of Operational Research, Elsevier, vol. 285(2), pages 642-654.
    3. Amelia Bilbao-Terol & Mariano Jiménez & Mar Arenas-Parra, 2016. "A group decision making model based on goal programming with fuzzy hierarchy: an application to regional forest planning," Annals of Operations Research, Springer, vol. 245(1), pages 137-162, October.
    4. Jones, Dylan & Florentino, Helenice & Cantane, Daniela & Oliveira, Rogerio, 2016. "An extended goal programming methodology for analysis of a network encompassing multiple objectives and stakeholders," European Journal of Operational Research, Elsevier, vol. 255(3), pages 845-855.
    5. Amelia Bilbao-Terol & Mar Arenas-Parra & Verónica Cañal-Fernández & Mariano Jiménez, 2016. "A sequential goal programming model with fuzzy hierarchies to sustainable and responsible portfolio selection problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(10), pages 1259-1273, October.
    6. Jiménez, Mariano & Bilbao-Terol, Amelia & Arenas-Parra, Mar, 2021. "Incorporating preferential weights as a benchmark into a Sequential Reference Point Method," European Journal of Operational Research, Elsevier, vol. 291(2), pages 575-585.
    7. Mila Bravo & Dylan Jones & David Pla-Santamaria & Graham Wall, 2018. "Robustness of weighted goal programming models: an analytical measure and its application to offshore wind-farm site selection in United Kingdom," Annals of Operations Research, Springer, vol. 267(1), pages 65-79, August.
    8. Edgar Ojeda Camargo & John E. Candelo-Becerra & Alcides Santander Mercado, 2019. "Lexicographic Multi-objective Optimisation of Hybrid Power Generation Systems for Communities in Non-Interconnected Zones," International Journal of Energy Economics and Policy, Econjournals, vol. 9(3), pages 205-217.
    9. Chun, Young H., 2015. "Multi-attribute sequential decision problem with optimizing and satisficing attributes," European Journal of Operational Research, Elsevier, vol. 243(1), pages 224-232.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jones, Dylan & Florentino, Helenice & Cantane, Daniela & Oliveira, Rogerio, 2016. "An extended goal programming methodology for analysis of a network encompassing multiple objectives and stakeholders," European Journal of Operational Research, Elsevier, vol. 255(3), pages 845-855.
    2. Chang, Ching-Ter, 2011. "Multi-choice goal programming with utility functions," European Journal of Operational Research, Elsevier, vol. 215(2), pages 439-445, December.
    3. Jones, Dylan, 2011. "A practical weight sensitivity algorithm for goal and multiple objective programming," European Journal of Operational Research, Elsevier, vol. 213(1), pages 238-245, August.
    4. Hocine, Amine, 2018. "Meta goal programing approach for solving multi-criteria de Novo programing problemAuthor-Name: Zhuang, Zheng-Yun," European Journal of Operational Research, Elsevier, vol. 265(1), pages 228-238.
    5. Hocine, Amin & Zhuang, Zheng-Yun & Kouaissah, Noureddine & Li, Der-Chiang, 2020. "Weighted-additive fuzzy multi-choice goal programming (WA-FMCGP) for supporting renewable energy site selection decisions," European Journal of Operational Research, Elsevier, vol. 285(2), pages 642-654.
    6. Amelia Bilbao-Terol & Mariano Jiménez & Mar Arenas-Parra, 2016. "A group decision making model based on goal programming with fuzzy hierarchy: an application to regional forest planning," Annals of Operations Research, Springer, vol. 245(1), pages 137-162, October.
    7. Jones, Dylan & Firouzy, Sina & Labib, Ashraf & Argyriou, Athanasios V., 2022. "Multiple criteria model for allocating new medical robotic devices to treatment centres," European Journal of Operational Research, Elsevier, vol. 297(2), pages 652-664.
    8. Benítez-Fernández, Amalia & Ruiz, Francisco, 2020. "A Meta-Goal Programming approach to cardinal preferences aggregation in multicriteria problems," Omega, Elsevier, vol. 94(C).
    9. Dylan F. Jones & Graham Wall, 2016. "An extended goal programming model for site selection in the offshore wind farm sector," Annals of Operations Research, Springer, vol. 245(1), pages 121-135, October.
    10. Oliveira, Washington A. & Fiorotto, Diego J. & Song, Xiang & Jones, Dylan F., 2021. "An extended goal programming model for the multiobjective integrated lot-sizing and cutting stock problem," European Journal of Operational Research, Elsevier, vol. 295(3), pages 996-1007.
    11. Chang, Ching-Ter, 2007. "Binary fuzzy goal programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 29-37, July.
    12. Şeyda Gür & Tamer Eren, 2018. "Scheduling and Planning in Service Systems with Goal Programming: Literature Review," Mathematics, MDPI, vol. 6(11), pages 1-16, November.
    13. González-Pachón, Jacinto & Romero, Carlos, 2016. "Bentham, Marx and Rawls ethical principles: In search for a compromise," Omega, Elsevier, vol. 62(C), pages 47-51.
    14. Natawat Jatuphatwarodom & Dylan F. Jones & Djamila Ouelhadj, 2018. "A mixed-model multi-objective analysis of strategic supply chain decision support in the Thai silk industry," Annals of Operations Research, Springer, vol. 267(1), pages 221-247, August.
    15. David Kik & Matthias Gerhard Wichmann & Thomas Stefan Spengler, 2022. "Decision support framework for the regional facility location and development planning problem," Journal of Business Economics, Springer, vol. 92(1), pages 115-157, January.
    16. Akbari, Negar & Jones, Dylan & Arabikhan, Farzad, 2021. "Goal programming models with interval coefficients for the sustainable selection of marine renewable energy projects in the UK," European Journal of Operational Research, Elsevier, vol. 293(2), pages 748-760.
    17. Marta Ezquerro & Marta Pardos & Luis Diaz-Balteiro, 2019. "Sustainability in Forest Management Revisited Using Multi-Criteria Decision-Making Techniques," Sustainability, MDPI, vol. 11(13), pages 1-24, July.
    18. Ramos, Francisco López & Batres, Rafael & De-la-Cruz-Márquez, Cynthia Griselle & Anzures, Melina López, 2023. "Optimization models for nopal crop planning with land usage expansion and government subsidy," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    19. Mila Bravo & Dylan Jones & David Pla-Santamaria & Francisco Salas-Molina, 2022. "Encompassing statistically unquantifiable randomness in goal programming: an application to portfolio selection," Operational Research, Springer, vol. 22(5), pages 5685-5706, November.
    20. Mila Bravo & Dylan Jones & David Pla-Santamaria & Graham Wall, 2018. "Robustness of weighted goal programming models: an analytical measure and its application to offshore wind-farm site selection in United Kingdom," Annals of Operations Research, Springer, vol. 267(1), pages 65-79, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:227:y:2013:i:2:p:343-349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.