IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v20y2020i2d10.1007_s12351-017-0340-7.html
   My bibliography  Save this article

An application of the SMAA–Choquet method to evaluate the performance of sailboats in offshore regattas

Author

Listed:
  • Silvia Angilella

    (University of Catania)

  • Sally Giuseppe Arcidiacono

    (University of Catania)

  • Salvatore Corrente

    (University of Catania)

  • Salvatore Greco

    (University of Catania
    University of Portsmouth)

  • Benedetto Matarazzo

    (University of Catania)

Abstract

In this paper we apply a recently introduced multiple criteria decision aiding method, namely the SMAA–Choquet method, to compare the performances of different sailboats in regattas. In sailing races where sailboats with different design can participate, the performances of the boats can be evaluated by using different scoring options. In each scoring option, a corrected time is computed taking into account the physical characteristics and the performances of the sailboats. While, in real competitions, the final ranking of the sailboats is obtained by using only one of the considered scoring options, in this paper we propose to aggregate the time values computed by these scoring options in a unique one. Since the time values computed by the scoring options are given on different scales and a certain degree of interaction between them could be observed, we apply the SMAA–Choquet method that is able to deal with both aspects simultaneously.

Suggested Citation

  • Silvia Angilella & Sally Giuseppe Arcidiacono & Salvatore Corrente & Salvatore Greco & Benedetto Matarazzo, 2020. "An application of the SMAA–Choquet method to evaluate the performance of sailboats in offshore regattas," Operational Research, Springer, vol. 20(2), pages 771-793, June.
  • Handle: RePEc:spr:operea:v:20:y:2020:i:2:d:10.1007_s12351-017-0340-7
    DOI: 10.1007/s12351-017-0340-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-017-0340-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-017-0340-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Corrente, Salvatore & Greco, Salvatore & Ishizaka, Alessio, 2016. "Combining analytical hierarchy process and Choquet integral within non-additive robust ordinal regression," Omega, Elsevier, vol. 61(C), pages 2-18.
    2. Robert L. Smith, 1984. "Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions," Operations Research, INFORMS, vol. 32(6), pages 1296-1308, December.
    3. Charles M. Mottley, 1954. "Letter to the Editor---The Application of Operations-Research Methods to Athletic Games," Operations Research, INFORMS, vol. 2(3), pages 335-338, August.
    4. Itzhak Gilboa & David Schmeidler, 1992. "Additive Representation of Non-Additive Measures and the Choquet Integral," Discussion Papers 985, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    5. M B Wright, 2009. "50 years of OR in sport," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 161-168, May.
    6. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    7. F. Hutton Barron & Bruce E. Barrett, 1996. "Decision Quality Using Ranked Attribute Weights," Management Science, INFORMS, vol. 42(11), pages 1515-1523, November.
    8. Tervonen, Tommi & van Valkenhoef, Gert & Baştürk, Nalan & Postmus, Douwe, 2013. "Hit-And-Run enables efficient weight generation for simulation-based multiple criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 224(3), pages 552-559.
    9. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore, 2015. "Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 172-182.
    10. Greco, Salvatore & Matarazzo, Benedetto & Slowinski, Roman, 2001. "Rough sets theory for multicriteria decision analysis," European Journal of Operational Research, Elsevier, vol. 129(1), pages 1-47, February.
    11. Keeney,Ralph L. & Raiffa,Howard, 1993. "Decisions with Multiple Objectives," Cambridge Books, Cambridge University Press, number 9780521438834.
    12. Chateauneuf, Alain & Jaffray, Jean-Yves, 1989. "Some characterizations of lower probabilities and other monotone capacities through the use of Mobius inversion," Mathematical Social Sciences, Elsevier, vol. 17(3), pages 263-283, June.
    13. Jacquet-Lagreze, Eric & Siskos, Yannis, 2001. "Preference disaggregation: 20 years of MCDA experience," European Journal of Operational Research, Elsevier, vol. 130(2), pages 233-245, April.
    14. Marichal, Jean-Luc & Roubens, Marc, 2000. "Determination of weights of interacting criteria from a reference set," European Journal of Operational Research, Elsevier, vol. 124(3), pages 641-650, August.
    15. Risto Lahdelma & Pekka Salminen, 2001. "SMAA-2: Stochastic Multicriteria Acceptability Analysis for Group Decision Making," Operations Research, INFORMS, vol. 49(3), pages 444-454, June.
    16. Angilella, Silvia & Greco, Salvatore & Matarazzo, Benedetto, 2010. "Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral," European Journal of Operational Research, Elsevier, vol. 201(1), pages 277-288, February.
    17. Olson, David L., 2001. "Comparison of three multicriteria methods to predict known outcomes," European Journal of Operational Research, Elsevier, vol. 130(3), pages 576-587, May.
    18. Angilella, Silvia & Greco, Salvatore & Lamantia, Fabio & Matarazzo, Benedetto, 2004. "Assessing non-additive utility for multicriteria decision aid," European Journal of Operational Research, Elsevier, vol. 158(3), pages 734-744, November.
    19. Grabisch, Michel, 1996. "The application of fuzzy integrals in multicriteria decision making," European Journal of Operational Research, Elsevier, vol. 89(3), pages 445-456, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore, 2015. "Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 172-182.
    2. Corrente, Salvatore & Greco, Salvatore & Ishizaka, Alessio, 2016. "Combining analytical hierarchy process and Choquet integral within non-additive robust ordinal regression," Omega, Elsevier, vol. 61(C), pages 2-18.
    3. Silvia Angilella & Marta Bottero & Salvatore Corrente & Valentina Ferretti & Salvatore Greco & Isabella M. Lami, 2016. "Non Additive Robust Ordinal Regression for urban and territorial planning: an application for siting an urban waste landfill," Annals of Operations Research, Springer, vol. 245(1), pages 427-456, October.
    4. Angilella, Silvia & Greco, Salvatore & Matarazzo, Benedetto, 2010. "Non-additive robust ordinal regression: A multiple criteria decision model based on the Choquet integral," European Journal of Operational Research, Elsevier, vol. 201(1), pages 277-288, February.
    5. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore & Słowiński, Roman, 2016. "Robust Ordinal Regression and Stochastic Multiobjective Acceptability Analysis in multiple criteria hierarchy process for the Choquet integral preference model," Omega, Elsevier, vol. 63(C), pages 154-169.
    6. Mikhail Timonin, 2016. "Choquet integral in decision analysis - lessons from the axiomatization," Papers 1611.09926, arXiv.org.
    7. Silvia Angilella & Maria Rosaria Pappalardo, 2022. "Performance assessment of energy companies employing Hierarchy Stochastic Multi-Attribute Acceptability Analysis," Operational Research, Springer, vol. 22(1), pages 299-370, March.
    8. Branke, Juergen & Corrente, Salvatore & Greco, Salvatore & Słowiński, Roman & Zielniewicz, Piotr, 2016. "Using Choquet integral as preference model in interactive evolutionary multiobjective optimization," European Journal of Operational Research, Elsevier, vol. 250(3), pages 884-901.
    9. Doumpos, Michael & Zopounidis, Constantin, 2011. "Preference disaggregation and statistical learning for multicriteria decision support: A review," European Journal of Operational Research, Elsevier, vol. 209(3), pages 203-214, March.
    10. Kadziński, Miłosz & Wójcik, Michał & Ciomek, Krzysztof, 2022. "Review and experimental comparison of ranking and choice procedures for constructing a univocal recommendation in a preference disaggregation setting," Omega, Elsevier, vol. 113(C).
    11. Bottero, M. & Ferretti, V. & Figueira, J.R. & Greco, S. & Roy, B., 2018. "On the Choquet multiple criteria preference aggregation model: Theoretical and practical insights from a real-world application," European Journal of Operational Research, Elsevier, vol. 271(1), pages 120-140.
    12. Arcidiacono, Sally Giuseppe & Corrente, Salvatore & Greco, Salvatore, 2021. "Robust stochastic sorting with interacting criteria hierarchically structured," European Journal of Operational Research, Elsevier, vol. 292(2), pages 735-754.
    13. Abastante, Francesca & Corrente, Salvatore & Greco, Salvatore & Ishizaka, Alessio & Lami, Isabella M., 2018. "Choice architecture for architecture choices: Evaluating social housing initiatives putting together a parsimonious AHP methodology and the Choquet integral," Land Use Policy, Elsevier, vol. 78(C), pages 748-762.
    14. Li, Jianping & Yao, Xiaoyang & Sun, Xiaolei & Wu, Dengsheng, 2018. "Determining the fuzzy measures in multiple criteria decision aiding from the tolerance perspective," European Journal of Operational Research, Elsevier, vol. 264(2), pages 428-439.
    15. Salvatore Corrente & José Figueira & Salvatore Greco, 2014. "Dealing with interaction between bipolar multiple criteria preferences in PROMETHEE methods," Annals of Operations Research, Springer, vol. 217(1), pages 137-164, June.
    16. Luis C. Dias & Gabriela D. Oliveira & Paula Sarabando, 2021. "Choice-based preference disaggregation concerning vehicle technologies," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 177-200, March.
    17. Zhao Qiaojiao & Zeng Ling & Liu Jinjin, 2016. "Fuzzy Integral Multiple Criteria Decision Making Method Based on Fuzzy Preference Relation on Alternatives," Journal of Systems Science and Information, De Gruyter, vol. 4(3), pages 280-290, June.
    18. Ciomek, Krzysztof & Ferretti, Valentina & Kadzinski, Milosz, 2018. "Predictive analytics and disused railways requalification: insights from a Post Factum Analysis perspective," LSE Research Online Documents on Economics 85922, London School of Economics and Political Science, LSE Library.
    19. Greco, Salvatore & Mousseau, Vincent & Słowiński, Roman, 2014. "Robust ordinal regression for value functions handling interacting criteria," European Journal of Operational Research, Elsevier, vol. 239(3), pages 711-730.
    20. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:20:y:2020:i:2:d:10.1007_s12351-017-0340-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.