IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v224y2013i3p552-559.html
   My bibliography  Save this article

Hit-And-Run enables efficient weight generation for simulation-based multiple criteria decision analysis

Author

Listed:
  • Tervonen, Tommi
  • van Valkenhoef, Gert
  • Baştürk, Nalan
  • Postmus, Douwe

Abstract

Models for Multiple Criteria Decision Analysis (MCDA) often separate per-criterion attractiveness evaluation from weighted aggregation of these evaluations across the different criteria. In simulation-based MCDA methods, such as Stochastic Multicriteria Acceptability Analysis, uncertainty in the weights is modeled through a uniform distribution on the feasible weight space defined by a set of linear constraints. Efficient sampling methods have been proposed for special cases, such as the unconstrained weight space or complete ordering of the weights. However, no efficient methods are available for other constraints such as imprecise trade-off ratios, and specialized sampling methods do not allow for flexibility in combining the different constraint types. In this paper, we explore how the Hit-And-Run sampler can be applied as a general approach for sampling from the convex weight space that results from an arbitrary combination of linear weight constraints. We present a technique for transforming the weight space to enable application of Hit-And-Run, and evaluate the sampler’s efficiency through computational tests. Our results show that the thinning factor required to obtain uniform samples can be expressed as a function of the number of criteria n as φ(n)=(n−1)3. We also find that the technique is reasonably fast with problem sizes encountered in practice and that autocorrelation is an appropriate convergence metric.

Suggested Citation

  • Tervonen, Tommi & van Valkenhoef, Gert & Baştürk, Nalan & Postmus, Douwe, 2013. "Hit-And-Run enables efficient weight generation for simulation-based multiple criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 224(3), pages 552-559.
  • Handle: RePEc:eee:ejores:v:224:y:2013:i:3:p:552-559
    DOI: 10.1016/j.ejor.2012.08.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712006637
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.08.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Greco, Salvatore & Mousseau, Vincent & Slowinski, Roman, 2010. "Multiple criteria sorting with a set of additive value functions," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1455-1470, December.
    2. Amit, Y. & Grenander, U., 1991. "Comparing sweep strategies for stochastic relaxation," Journal of Multivariate Analysis, Elsevier, vol. 37(2), pages 197-222, May.
    3. Tervonen, Tommi & Lahdelma, Risto, 2007. "Implementing stochastic multicriteria acceptability analysis," European Journal of Operational Research, Elsevier, vol. 178(2), pages 500-513, April.
    4. Robert L. Smith, 1984. "Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions," Operations Research, INFORMS, vol. 32(6), pages 1296-1308, December.
    5. Greco, Salvatore & Mousseau, Vincent & Slowinski, Roman, 2008. "Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions," European Journal of Operational Research, Elsevier, vol. 191(2), pages 416-436, December.
    6. Butler, John & Jia, Jianmin & Dyer, James, 1997. "Simulation techniques for the sensitivity analysis of multi-criteria decision models," European Journal of Operational Research, Elsevier, vol. 103(3), pages 531-546, December.
    7. Risto Lahdelma & Pekka Salminen, 2001. "SMAA-2: Stochastic Multicriteria Acceptability Analysis for Group Decision Making," Operations Research, INFORMS, vol. 49(3), pages 444-454, June.
    8. Tervonen, Tommi & Figueira, José Rui & Lahdelma, Risto & Dias, Juscelino Almeida & Salminen, Pekka, 2009. "A stochastic method for robustness analysis in sorting problems," European Journal of Operational Research, Elsevier, vol. 192(1), pages 236-242, January.
    9. Vansnick, Jean-Claude, 1986. "On the problem of weights in multiple criteria decision making (the noncompensatory approach)," European Journal of Operational Research, Elsevier, vol. 24(2), pages 288-294, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    2. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2018. "σ-µ efficiency analysis: A new methodology for evaluating units through composite indices," MPRA Paper 83569, University Library of Munich, Germany.
    3. Kadziński, Miłosz & Ciomek, Krzysztof, 2021. "Active learning strategies for interactive elicitation of assignment examples for threshold-based multiple criteria sorting," European Journal of Operational Research, Elsevier, vol. 293(2), pages 658-680.
    4. Menou, Abdellah & Benallou, Abdelhanine & Lahdelma, Risto & Salminen, Pekka, 2010. "Decision support for centralizing cargo at a Moroccan airport hub using stochastic multicriteria acceptability analysis," European Journal of Operational Research, Elsevier, vol. 204(3), pages 621-629, August.
    5. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore, 2015. "Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 172-182.
    6. R. Pelissari & M. C. Oliveira & S. Ben Amor & A. Kandakoglu & A. L. Helleno, 2020. "SMAA methods and their applications: a literature review and future research directions," Annals of Operations Research, Springer, vol. 293(2), pages 433-493, October.
    7. Kadziński, Miłosz & Tervonen, Tommi, 2013. "Robust multi-criteria ranking with additive value models and holistic pair-wise preference statements," European Journal of Operational Research, Elsevier, vol. 228(1), pages 169-180.
    8. Liu, Jiapeng & Liao, Xiuwu & Huang, Wei & Liao, Xianzhao, 2019. "Market segmentation: A multiple criteria approach combining preference analysis and segmentation decision," Omega, Elsevier, vol. 83(C), pages 1-13.
    9. Podinovski, Vladislav V., 2020. "Maximum likelihood solutions for multicriterial choice problems," European Journal of Operational Research, Elsevier, vol. 286(1), pages 299-308.
    10. Luis V. Montiel & J. Eric Bickel, 2014. "A Generalized Sampling Approach for Multilinear Utility Functions Given Partial Preference Information," Decision Analysis, INFORMS, vol. 11(3), pages 147-170, September.
    11. Luis C. Dias & Carolina Passeira & João Malça & Fausto Freire, 2022. "Integrating life-cycle assessment and multi-criteria decision analysis to compare alternative biodiesel chains," Annals of Operations Research, Springer, vol. 312(2), pages 1359-1374, May.
    12. Khaled Belahcène & Vincent Mousseau & Wassila Ouerdane & Marc Pirlot & Olivier Sobrie, 2023. "Multiple criteria sorting models and methods—Part I: survey of the literature," 4OR, Springer, vol. 21(1), pages 1-46, March.
    13. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2019. "Sigma-Mu efficiency analysis: A methodology for evaluating units through composite indicators," European Journal of Operational Research, Elsevier, vol. 278(3), pages 942-960.
    14. Ru, Zice & Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu, 2023. "Probabilistic ordinal regression methods for multiple criteria sorting admitting certain and uncertain preferences," European Journal of Operational Research, Elsevier, vol. 311(2), pages 596-616.
    15. Lahdelma, Risto & Salminen, Pekka, 2009. "Prospect theory and stochastic multicriteria acceptability analysis (SMAA)," Omega, Elsevier, vol. 37(5), pages 961-971, October.
    16. Silvia Angilella & Maria Rosaria Pappalardo, 2022. "Performance assessment of energy companies employing Hierarchy Stochastic Multi-Attribute Acceptability Analysis," Operational Research, Springer, vol. 22(1), pages 299-370, March.
    17. Ru, Zice & Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu, 2022. "Bayesian ordinal regression for multiple criteria choice and ranking," European Journal of Operational Research, Elsevier, vol. 299(2), pages 600-620.
    18. Eduardo Fernandez & Jorge Navarro & Rafael Olmedo, 2018. "Characterization of the Effectiveness of Several Outranking-Based Multi-Criteria Sorting Methods," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(04), pages 1047-1084, July.
    19. Tylock, Steven M. & Seager, Thomas P. & Snell, Jeff & Bennett, Erin R. & Sweet, Don, 2012. "Energy management under policy and technology uncertainty," Energy Policy, Elsevier, vol. 47(C), pages 156-163.
    20. Tervonen, Tommi & Figueira, José Rui & Lahdelma, Risto & Dias, Juscelino Almeida & Salminen, Pekka, 2009. "A stochastic method for robustness analysis in sorting problems," European Journal of Operational Research, Elsevier, vol. 192(1), pages 236-242, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:224:y:2013:i:3:p:552-559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.