IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v201y2017icp363-370.html
   My bibliography  Save this article

Off-grid electricity generation using mixed biomass compost: A scenario-based study with sensitivity analysis

Author

Listed:
  • Naqvi, Muhammad
  • Yan, Jinyue
  • Dahlquist, Erik
  • Naqvi, Salman Raza

Abstract

The aim of the study is to investigate the viability of waste gasification based off-grid electricity generation utilizing mixed biomass composts (mixture of rice hulls with cow/poultry manure compost). The economic viability is studied on the different scenarios with considerations of (1) levels of electricity demand and utilization, (2) costs of variable biomass mix, (3) combined domestic and cottage industry business model, and (4) influence of governmental investments. The levelized cost of electricity (LCOE) is used as an indicator to measure the competitiveness of gasification based off-grid electricity generation. The plant loading and the capacity factor have been used to assess the impacts of different scenarios. A sensitivity analysis of key parameters based on variations in annual operational hours, plant efficiency, plant cost and biomass supply cost is conducted. Based on levels of electricity demand and utilization, the LCOE ranged between 40UScents/kWh and 29UScents/kWh based on the plant loading and the capacity factor. The business revenue would not change considerably despite better plant utilization and reduced levelized cost of electricity if all the consumers, both basic or medium, are charged with the flat tariff. The part load operation will be costly despite considerably low capital investment per kW in comparison with PV or solar based plants. There is a large potential of off-grid electricity generation but the estimated off-grid electricity price is found to be higher in all scenarios than average grid-based electricity tariff. Moreover, the challenges for the implementation of the real off-grid electricity generation plant are discussed.

Suggested Citation

  • Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik & Naqvi, Salman Raza, 2017. "Off-grid electricity generation using mixed biomass compost: A scenario-based study with sensitivity analysis," Applied Energy, Elsevier, vol. 201(C), pages 363-370.
  • Handle: RePEc:eee:appene:v:201:y:2017:i:c:p:363-370
    DOI: 10.1016/j.apenergy.2017.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917301198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Buragohain, Buljit & Mahanta, Pinakeswar & Moholkar, Vijayanand S., 2010. "Biomass gasification for decentralized power generation: The Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 73-92, January.
    2. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    3. Heydari, Ali & Askarzadeh, Alireza, 2016. "Optimization of a biomass-based photovoltaic power plant for an off-grid application subject to loss of power supply probability concept," Applied Energy, Elsevier, vol. 165(C), pages 601-611.
    4. Alauddin, Mohammad & Quiggin, John, 2008. "Agricultural intensification, irrigation and the environment in South Asia: Issues and policy options," Ecological Economics, Elsevier, vol. 65(1), pages 111-124, March.
    5. Razeghi, Ghazal & Brouwer, Jack & Samuelsen, Scott, 2016. "A spatially and temporally resolved model of the electricity grid – Economic vs environmental dispatch," Applied Energy, Elsevier, vol. 178(C), pages 540-556.
    6. Mohammed, Y.S. & Mokhtar, A.S. & Bashir, N. & Saidur, R., 2013. "An overview of agricultural biomass for decentralized rural energy in Ghana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 15-25.
    7. Suramaythangkoor, Tritib & Gheewala, Shabbir H., 2010. "Potential alternatives of heat and power technology application using rice straw in Thailand," Applied Energy, Elsevier, vol. 87(1), pages 128-133, January.
    8. Mirza, Umar K. & Ahmad, Nasir & Majeed, Tariq, 2008. "An overview of biomass energy utilization in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(7), pages 1988-1996, September.
    9. Ouyang, Xiaoling & Lin, Boqiang, 2014. "Levelized cost of electricity (LCOE) of renewable energies and required subsidies in China," Energy Policy, Elsevier, vol. 70(C), pages 64-73.
    10. Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H. & Sajjakulnukit, Boonrod, 2011. "Economic feasibility assessment of rice straw utilization for electricity generating through combustion in Thailand," Applied Energy, Elsevier, vol. 88(11), pages 3651-3658.
    11. Purohit, Pallav & Tripathi, Arun Kumar & Kandpal, Tara Chandra, 2006. "Energetics of coal substitution by briquettes of agricultural residues," Energy, Elsevier, vol. 31(8), pages 1321-1331.
    12. Palit, Debajit & Bandyopadhyay, Kaushik Ranjan, 2016. "Rural electricity access in South Asia: Is grid extension the remedy? A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1505-1515.
    13. Lim, Jeng Shiun & Abdul Manan, Zainuddin & Wan Alwi, Sharifah Rafidah & Hashim, Haslenda, 2012. "A review on utilisation of biomass from rice industry as a source of renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3084-3094.
    14. Naqvi, Muhammad & Yan, Jinyue & Dahlquist, Erik, 2013. "System analysis of dry black liquor gasification based synthetic gas production comparing oxygen and air blown gasification systems," Applied Energy, Elsevier, vol. 112(C), pages 1275-1282.
    15. Zubi, Ghassan & Dufo-López, Rodolfo & Pasaoglu, Guzay & Pardo, Nicolás, 2016. "Techno-economic assessment of an off-grid PV system for developing regions to provide electricity for basic domestic needs: A 2020–2040 scenario," Applied Energy, Elsevier, vol. 176(C), pages 309-319.
    16. Shafie, S.M. & Masjuki, H.H. & Mahlia, T.M.I., 2014. "Life cycle assessment of rice straw-based power generation in Malaysia," Energy, Elsevier, vol. 70(C), pages 401-410.
    17. Ramamurthi, Pooja Vijay & Fernandes, Maria Cristina & Nielsen, Per Sieverts & Nunes, Clemente Pedro, 2016. "Utilisation of rice residues for decentralised electricity generation in Ghana: An economic analysis," Energy, Elsevier, vol. 111(C), pages 620-629.
    18. Leung, Dennis Y. C. & Yin, X. L. & Wu, C. Z., 2004. "A review on the development and commercialization of biomass gasification technologies in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(6), pages 565-580, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elem Patricia Rocha Alves & Orlando Salcedo-Puerto & Jesús Nuncira & Samuel Emebu & Clara Mendoza-Martinez, 2023. "Renewable Energy Potential and CO 2 Performance of Main Biomasses Used in Brazil," Energies, MDPI, vol. 16(9), pages 1-59, May.
    2. Dahlquist, Erik & Naqvi, Muhammad & Thorin, Eva & Yan, Jinyue & Kyprianidis, Konstantinos & Hartwell, Philip, 2017. "Experimental and numerical investigation of pellet and black liquor gasification for polygeneration plant," Applied Energy, Elsevier, vol. 204(C), pages 1055-1064.
    3. Maryori C. Díaz-Ramírez & Víctor J. Ferreira & Tatiana García-Armingol & Ana María López-Sabirón & Germán Ferreira, 2020. "Environmental Assessment of Electrochemical Energy Storage Device Manufacturing to Identify Drivers for Attaining Goals of Sustainable Materials 4.0," Sustainability, MDPI, vol. 12(1), pages 1-20, January.
    4. Ricardo A. Narváez C. & Richard Blanchard & Roger Dixon & Valeria Ramírez & Diego Chulde, 2018. "Low-Cost Syngas Shifting for Remote Gasifiers: Combination of CO 2 Adsorption and Catalyst Addition in a Novel and Simplified Packed Structure," Energies, MDPI, vol. 11(2), pages 1-16, February.
    5. Kan, Tao & Strezov, Vladimir & Evans, Tim & He, Jing & Kumar, Ravinder & Lu, Qiang, 2020. "Catalytic pyrolysis of lignocellulosic biomass: A review of variations in process factors and system structure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Cyril Anak John & Lian See Tan & Jully Tan & Peck Loo Kiew & Azmi Mohd Shariff & Hairul Nazirah Abdul Halim, 2021. "Selection of Renewable Energy in Rural Area Via Life Cycle Assessment-Analytical Hierarchy Process (LCA-AHP): A Case Study of Tatau, Sarawak," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    7. Nömm, Jakob & Rönnberg, Sarah K. & Bollen, Math H.J., 2021. "Techno-economic analysis with energy flow modeling for investigating the investment risks related to consumption changes within a standalone microgrid in Sweden," Energy, Elsevier, vol. 225(C).
    8. Ji, Ling & Liang, Xiaolin & Xie, Yulei & Huang, Guohe & Wang, Bing, 2021. "Optimal design and sensitivity analysis of the stand-alone hybrid energy system with PV and biomass-CHP for remote villages," Energy, Elsevier, vol. 225(C).
    9. Safder, Usman & Hai, Tra Nguyen & Loy-Benitez, Jorge & Yoo, ChangKyoo, 2022. "Nationwide policymaking strategies to prevent future electricity crises in developing countries using data-driven forecasting and fuzzy-SWOT analyses," Energy, Elsevier, vol. 259(C).
    10. Naqvi, Salman Raza & Jamshaid, Sana & Naqvi, Muhammad & Farooq, Wasif & Niazi, Muhammad Bilal Khan & Aman, Zaeem & Zubair, Muhammad & Ali, Majid & Shahbaz, Muhammad & Inayat, Abrar & Afzal, Waheed, 2018. "Potential of biomass for bioenergy in Pakistan based on present case and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1247-1258.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramamurthi, Pooja Vijay & Fernandes, Maria Cristina & Nielsen, Per Sieverts & Nunes, Clemente Pedro, 2016. "Utilisation of rice residues for decentralised electricity generation in Ghana: An economic analysis," Energy, Elsevier, vol. 111(C), pages 620-629.
    2. Shafie, S.M., 2016. "A review on paddy residue based power generation: Energy, environment and economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1089-1100.
    3. Chitawo, Maxon L. & Chimphango, Annie F.A., 2017. "A synergetic integration of bioenergy and rice production in rice farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 58-67.
    4. Pode, Ramchandra, 2016. "Potential applications of rice husk ash waste from rice husk biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1468-1485.
    5. Sin Sokrethya & Zarif Aminov & Nguyen Van Quan & Tran Dang Xuan, 2023. "Feasibility of 10 MW Biomass-Fired Power Plant Used Rice Straw in Cambodia," Energies, MDPI, vol. 16(2), pages 1-18, January.
    6. de Oliveira, Jofran Luiz & da Silva, Jadir Nogueira & Graciosa Pereira, Emanuele & Oliveira Filho, Delly & Rizzo Carvalho, Daniel, 2013. "Characterization and mapping of waste from coffee and eucalyptus production in Brazil for thermochemical conversion of energy via gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 52-58.
    7. Pode, Ramchandra & Diouf, Boucar & Pode, Gayatri, 2015. "Sustainable rural electrification using rice husk biomass energy: A case study of Cambodia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 530-542.
    8. Ali, Ghaffar & Bashir, Muhammad Khalid & Ali, Hassan & Bashir, Muhammad Hamid, 2016. "Utilization of rice husk and poultry wastes for renewable energy potential in Pakistan: An economic perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 25-29.
    9. Shafie, S.M. & Mahlia, T.M.I. & Masjuki, H.H., 2013. "Life cycle assessment of rice straw co-firing with coal power generation in Malaysia," Energy, Elsevier, vol. 57(C), pages 284-294.
    10. Huda, A.S.N. & Mekhilef, S. & Ahsan, A., 2014. "Biomass energy in Bangladesh: Current status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 504-517.
    11. Zhang, Qin & Zhou, Dequn & Zhou, Peng & Ding, Hao, 2013. "Cost Analysis of straw-based power generation in Jiangsu Province, China," Applied Energy, Elsevier, vol. 102(C), pages 785-793.
    12. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    13. Singh, Renu & Shukla, Ashish, 2014. "A review on methods of flue gas cleaning from combustion of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 854-864.
    14. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Greener energy: Issues and challenges for Pakistan--Biomass energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3207-3219, August.
    15. He, Jiaxin & Liu, Ying & Lin, Boqiang, 2018. "Should China support the development of biomass power generation?," Energy, Elsevier, vol. 163(C), pages 416-425.
    16. Subhes C. Bhattacharyya, 2018. "Mini-Grids for the Base of the Pyramid Market: A Critical Review," Energies, MDPI, vol. 11(4), pages 1-21, April.
    17. Ahmed, Abubakari & Gasparatos, Alexandros, 2020. "Multi-dimensional energy poverty patterns around industrial crop projects in Ghana: Enhancing the energy poverty alleviation potential of rural development strategies," Energy Policy, Elsevier, vol. 137(C).
    18. Aberilla, Jhud Mikhail & Gallego-Schmid, Alejandro & Azapagic, Adisa, 2019. "Environmental sustainability of small-scale biomass power technologies for agricultural communities in developing countries," Renewable Energy, Elsevier, vol. 141(C), pages 493-506.
    19. Qing Yin & Muhan Yu & Xueliang Ma & Ying Liu & Xunzhi Yin, 2023. "The Role of Straw Materials in Energy-Efficient Buildings: Current Perspectives and Future Trends," Energies, MDPI, vol. 16(8), pages 1-24, April.
    20. Silalertruksa, Thapat & Gheewala, Shabbir H. & Sagisaka, Masayuki & Yamaguchi, Katsunobu, 2013. "Life cycle GHG analysis of rice straw bio-DME production and application in Thailand," Applied Energy, Elsevier, vol. 112(C), pages 560-567.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:201:y:2017:i:c:p:363-370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.