IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v165y2016icp601-611.html
   My bibliography  Save this article

Optimization of a biomass-based photovoltaic power plant for an off-grid application subject to loss of power supply probability concept

Author

Listed:
  • Heydari, Ali
  • Askarzadeh, Alireza

Abstract

Using renewable energy sources is an efficient alternative to supply the electrical load of stand-alone remote areas. The main motivation of this paper is to optimize the size of a biomass-based PV power plant to supply the electrical power of agricultural wells located in Bardsir, Kerman, Iran. In an off-grid PV power plant, there must be a backup system to supply the demanded load in deficit conditions. Biomass energy generation systems could be complementary taking into account their different properties in reliability. As a result, the combination of PV and biomass systems could be an effective way to make a reliable and cost-effective hybrid energy system. In the proposed hybrid system, the area of the PV system and the size of the engine–generator of the biomass system are optimized for minimizing the total net present cost (TNPC) of the system during its lifetime. The reliability of the designed system is met by considering the loss of power supply probability (LPSP) concept. For the investigated region, the obtained results indicate that the PV/biomass generation system is more promising than a single PV system or a single biomass system.

Suggested Citation

  • Heydari, Ali & Askarzadeh, Alireza, 2016. "Optimization of a biomass-based photovoltaic power plant for an off-grid application subject to loss of power supply probability concept," Applied Energy, Elsevier, vol. 165(C), pages 601-611.
  • Handle: RePEc:eee:appene:v:165:y:2016:i:c:p:601-611
    DOI: 10.1016/j.apenergy.2015.12.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915016682
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.12.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diaf, S. & Notton, G. & Belhamel, M. & Haddadi, M. & Louche, A., 2008. "Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions," Applied Energy, Elsevier, vol. 85(10), pages 968-987, October.
    2. Liao, Xiaocong & Li, Huan, 2015. "Biogas production from low-organic-content sludge using a high-solids anaerobic digester with improved agitation," Applied Energy, Elsevier, vol. 148(C), pages 252-259.
    3. Smith, Cameron & Burrows, John & Scheier, Eric & Young, Amberli & Smith, Jessica & Young, Tiffany & Gheewala, Shabbir H., 2015. "Comparative Life Cycle Assessment of a Thai Island's diesel/PV/wind hybrid microgrid," Renewable Energy, Elsevier, vol. 80(C), pages 85-100.
    4. Bekele, Getachew & Tadesse, Getnet, 2012. "Feasibility study of small Hydro/PV/Wind hybrid system for off-grid rural electrification in Ethiopia," Applied Energy, Elsevier, vol. 97(C), pages 5-15.
    5. Mudasser, Muhammad & Yiridoe, Emmanuel K. & Corscadden, Kenneth, 2015. "Cost-benefit analysis of grid-connected wind–biogas hybrid energy production, by turbine capacity and site," Renewable Energy, Elsevier, vol. 80(C), pages 573-582.
    6. Ekren, Orhan & Ekren, Banu Y., 2010. "Size optimization of a PV/wind hybrid energy conversion system with battery storage using simulated annealing," Applied Energy, Elsevier, vol. 87(2), pages 592-598, February.
    7. Monlau, F. & Sambusiti, C. & Antoniou, N. & Barakat, A. & Zabaniotou, A., 2015. "A new concept for enhancing energy recovery from agricultural residues by coupling anaerobic digestion and pyrolysis process," Applied Energy, Elsevier, vol. 148(C), pages 32-38.
    8. Surita, Sharon C. & Tansel, Berrin, 2015. "Preliminary investigation to characterize deposits forming during combustion of biogas from anaerobic digesters and landfills," Renewable Energy, Elsevier, vol. 80(C), pages 674-681.
    9. Scholz, Marco & Melin, Thomas & Wessling, Matthias, 2013. "Transforming biogas into biomethane using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 199-212.
    10. Zamalloa, Carlos & Boon, Nico & Verstraete, Willy, 2012. "Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions," Applied Energy, Elsevier, vol. 92(C), pages 733-738.
    11. Balaman, Şebnem Yılmaz & Selim, Hasan, 2014. "A network design model for biomass to energy supply chains with anaerobic digestion systems," Applied Energy, Elsevier, vol. 130(C), pages 289-304.
    12. Kang, Do Won & Kim, Tong Seop & Hur, Kwang Beom & Park, Jung Keuk, 2012. "The effect of firing biogas on the performance and operating characteristics of simple and recuperative cycle gas turbine combined heat and power systems," Applied Energy, Elsevier, vol. 93(C), pages 215-228.
    13. Diaf, S. & Diaf, D. & Belhamel, M. & Haddadi, M. & Louche, A., 2007. "A methodology for optimal sizing of autonomous hybrid PV/wind system," Energy Policy, Elsevier, vol. 35(11), pages 5708-5718, November.
    14. Mezzullo, William G. & McManus, Marcelle C. & Hammond, Geoff P., 2013. "Life cycle assessment of a small-scale anaerobic digestion plant from cattle waste," Applied Energy, Elsevier, vol. 102(C), pages 657-664.
    15. Pérez-Navarro, A. & Alfonso, D. & Álvarez, C. & Ibáñez, F. & Sánchez, C. & Segura, I., 2010. "Hybrid biomass-wind power plant for reliable energy generation," Renewable Energy, Elsevier, vol. 35(7), pages 1436-1443.
    16. Ho, W.S. & Hashim, H. & Lim, J.S., 2014. "Integrated biomass and solar town concept for a smart eco-village in Iskandar Malaysia (IM)," Renewable Energy, Elsevier, vol. 69(C), pages 190-201.
    17. Sinha, Sunanda & Chandel, S.S., 2014. "Review of software tools for hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 192-205.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahesh, Aeidapu & Sandhu, Kanwarjit Singh, 2015. "Hybrid wind/photovoltaic energy system developments: Critical review and findings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1135-1147.
    2. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    3. Maleki, Akbar & Pourfayaz, Fathollah & Rosen, Marc A., 2016. "A novel framework for optimal design of hybrid renewable energy-based autonomous energy systems: A case study for Namin, Iran," Energy, Elsevier, vol. 98(C), pages 168-180.
    4. Mazzeo, Domenico & Matera, Nicoletta & De Luca, Pierangelo & Baglivo, Cristina & Maria Congedo, Paolo & Oliveti, Giuseppe, 2020. "Worldwide geographical mapping and optimization of stand-alone and grid-connected hybrid renewable system techno-economic performance across Köppen-Geiger climates," Applied Energy, Elsevier, vol. 276(C).
    5. Jaszczur, Marek & Hassan, Qusay & Palej, Patryk & Abdulateef, Jasim, 2020. "Multi-Objective optimisation of a micro-grid hybrid power system for household application," Energy, Elsevier, vol. 202(C).
    6. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    7. Haratian, Mojtaba & Tabibi, Pouya & Sadeghi, Meisam & Vaseghi, Babak & Poustdouz, Amin, 2018. "A renewable energy solution for stand-alone power generation: A case study of KhshU Site-Iran," Renewable Energy, Elsevier, vol. 125(C), pages 926-935.
    8. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2013. "A review of photovoltaic systems size optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 454-465.
    9. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    10. Rafique, M. Mujahid & Rehman, S. & Alhems, Luai M., 2018. "Developing zero energy and sustainable villages – A case study for communities of the future," Renewable Energy, Elsevier, vol. 127(C), pages 565-574.
    11. Sawle, Yashwant & Gupta, S.C. & Bohre, Aashish Kumar, 2018. "Review of hybrid renewable energy systems with comparative analysis of off-grid hybrid system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2217-2235.
    12. Upadhyay, Subho & Sharma, M.P., 2014. "A review on configurations, control and sizing methodologies of hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 47-63.
    13. Amara, Sihem & Toumi, Sana & Salah, Chokri Ben & Saidi, Abdelaziz Salah, 2021. "Improvement of techno-economic optimal sizing of a hybrid off-grid micro-grid system," Energy, Elsevier, vol. 233(C).
    14. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission," Energy, Elsevier, vol. 54(C), pages 220-230.
    15. Guo, Shaopeng & Liu, Qibin & Sun, Jie & Jin, Hongguang, 2018. "A review on the utilization of hybrid renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1121-1147.
    16. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.
    17. Song, Jeonghun & Oh, Si-Doek & Yoo, Yungpil & Seo, Seok-Ho & Paek, Insu & Song, Yuan & Song, Seung Jin, 2018. "System design and policy suggestion for reducing electricity curtailment in renewable power systems for remote islands," Applied Energy, Elsevier, vol. 225(C), pages 195-208.
    18. Maleki, Akbar & Ameri, Mehran & Keynia, Farshid, 2015. "Scrutiny of multifarious particle swarm optimization for finding the optimal size of a PV/wind/battery hybrid system," Renewable Energy, Elsevier, vol. 80(C), pages 552-563.
    19. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    20. Wissem, Zghal & Gueorgui, Kantchev & Hédi, Kchaou, 2012. "Modeling and technical–economic optimization of an autonomous photovoltaic system," Energy, Elsevier, vol. 37(1), pages 263-272.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:165:y:2016:i:c:p:601-611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.