IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v133y2014icp1-13.html
   My bibliography  Save this article

A simulation-based fuzzy possibilistic programming model for coal blending management with consideration of human health risk under uncertainty

Author

Listed:
  • Dai, C.
  • Cai, X.H.
  • Cai, Y.P.
  • Huang, G.H.

Abstract

In this research, a simulation-based fuzzy possibilistic programming (SFPP) model was advanced through integrating California puff (CALPUFF), fuzzy sets theory and inexact optimization within a general framework. It has advantages in uncertainty reflection, pollutant dispersion modeling, and the management of coal blending and the related human health risks. The developed SFPP model was solved through a direct search approach which coupled fuzzy simulation and Genetic Algorithm (GA). This approach can not only handle a coupled simulation–optimization problem considering uncertainties that can be expressed as fuzzy sets, but also provided the additional information (i.e. possibility of constraint satisfaction) indicating that how likely a decision maker can believe the decision results. It also can reduce the chances of being trapped in local optima as GA converges to global optima. Moreover, the employed direct search method can avoid the approximation error originating from surrogate simulators and enhance the confidence level of the generated optimal solutions. The developed model was applied to the planning of coal blending in Gaojing and Shijingshan power plants in the west of Beijing. The results indicated that the developed SFPP model was useful for generating a series of coal blending schemes under different acceptable possibility levels, ensuring that the risk to human health reduce to an acceptable level, identifying desired coal blending strategies for decision makers, and considering a proper balance between system costs and acceptable possibility levels.

Suggested Citation

  • Dai, C. & Cai, X.H. & Cai, Y.P. & Huang, G.H., 2014. "A simulation-based fuzzy possibilistic programming model for coal blending management with consideration of human health risk under uncertainty," Applied Energy, Elsevier, vol. 133(C), pages 1-13.
  • Handle: RePEc:eee:appene:v:133:y:2014:i:c:p:1-13
    DOI: 10.1016/j.apenergy.2014.07.092
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914007831
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.07.092?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Ke-Miao & Lee, Wen-Jhy & Chen, Wei-Hsin & Lin, Ta-Chang, 2013. "Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends," Applied Energy, Elsevier, vol. 105(C), pages 57-65.
    2. Mansouri Majoumerd, Mohammad & Raas, Han & De, Sudipta & Assadi, Mohsen, 2014. "Estimation of performance variation of future generation IGCC with coal quality and gasification process – Simulation results of EU H2-IGCC project," Applied Energy, Elsevier, vol. 113(C), pages 452-462.
    3. Loeffler, Dan & Anderson, Nathaniel, 2014. "Emissions tradeoffs associated with cofiring forest biomass with coal: A case study in Colorado, USA," Applied Energy, Elsevier, vol. 113(C), pages 67-77.
    4. Liu, Guangkui & Li, Zhengqi & Chen, Zhichao & Zhu, Xingying & Zhu, Qunyi, 2012. "Effect of the anthracite ratio of blended coals on the combustion and NOx emission characteristics of a retrofitted down-fired 660-MWe utility boiler," Applied Energy, Elsevier, vol. 95(C), pages 196-201.
    5. Si, Junping & Liu, Xiaowei & Xu, Minghou & Sheng, Lei & Zhou, Zijian & Wang, Chao & Zhang, Yang & Seo, Yong-Chil, 2014. "Effect of kaolin additive on PM2.5 reduction during pulverized coal combustion: Importance of sodium and its occurrence in coal," Applied Energy, Elsevier, vol. 114(C), pages 434-444.
    6. Sakulniyomporn, Songsak & Kubaha, Kuskana & Chullabodhi, Chullapong, 2011. "External costs of fossil electricity generation: Health-based assessment in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3470-3479.
    7. Liu, Chiun-Ming & Sherali, Hanif D., 2000. "A coal shipping and blending problem for an electric utility company," Omega, Elsevier, vol. 28(4), pages 433-444, August.
    8. Muthuraman, Marisamy & Namioka, Tomoaki & Yoshikawa, Kunio, 2010. "Characteristics of co-combustion and kinetic study on hydrothermally treated municipal solid waste with different rank coals: A thermogravimetric analysis," Applied Energy, Elsevier, vol. 87(1), pages 141-148, January.
    9. Álvarez, L. & Gharebaghi, M. & Jones, J.M. & Pourkashanian, M. & Williams, A. & Riaza, J. & Pevida, C. & Pis, J.J. & Rubiera, F., 2013. "CFD modeling of oxy-coal combustion: Prediction of burnout, volatile and NO precursors release," Applied Energy, Elsevier, vol. 104(C), pages 653-665.
    10. Cai, Y.P. & Huang, G.H. & Yang, Z.F. & Tan, Q., 2009. "Identification of optimal strategies for energy management systems planning under multiple uncertainties," Applied Energy, Elsevier, vol. 86(4), pages 480-495, April.
    11. Jin, Yuqi & Lu, Liang & Ma, Xiaojun & Liu, Hongmei & Chi, Yong & Yoshikawa, Kunio, 2013. "Effects of blending hydrothermally treated municipal solid waste with coal on co-combustion characteristics in a lab-scale fluidized bed reactor," Applied Energy, Elsevier, vol. 102(C), pages 563-570.
    12. Chen, Chih-Jung & Hung, Chen-I. & Chen, Wei-Hsin, 2012. "Numerical investigation on performance of coal gasification under various injection patterns in an entrained flow gasifier," Applied Energy, Elsevier, vol. 100(C), pages 218-228.
    13. Liu, Y. & Huang, G.H. & Cai, Y.P. & Cheng, G.H. & Niu, Y.T. & An, K., 2009. "Development of an inexact optimization model for coupled coal and power management in North China," Energy Policy, Elsevier, vol. 37(11), pages 4345-4363, November.
    14. Díaz-Ramírez, Maryori & Sebastián, Fernando & Royo, Javier & Rezeau, Adeline, 2014. "Influencing factors on NOX emission level during grate conversion of three pelletized energy crops," Applied Energy, Elsevier, vol. 115(C), pages 360-373.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guangfang Luo & Jianjun Zhang & Yongheng Rao & Xiaolei Zhu & Yiqiang Guo, 2017. "Coal Supply Chains: A Whole-Process-Based Measurement of Carbon Emissions in a Mining City of China," Energies, MDPI, vol. 10(11), pages 1-18, November.
    2. Lv, Chengwei & Xu, Jiuping & Xie, Heping & Zeng, Ziqiang & Wu, Yimin, 2016. "Equilibrium strategy based coal blending method for combined carbon and PM10 emissions reductions," Applied Energy, Elsevier, vol. 183(C), pages 1035-1052.
    3. Xu, Jiuping & Huang, Qian & Lv, Chengwei & Feng, Qing & Wang, Fengjuan, 2018. "Carbon emissions reductions oriented dynamic equilibrium strategy using biomass-coal co-firing," Energy Policy, Elsevier, vol. 123(C), pages 184-197.
    4. Hanak, D.P. & Kolios, A.J. & Biliyok, C. & Manovic, V., 2015. "Probabilistic performance assessment of a coal-fired power plant," Applied Energy, Elsevier, vol. 139(C), pages 350-364.
    5. Prasad, Sanjeev K. & Mangaraj, B.K., 2022. "A multi-objective competitive-design framework for fuel procurement planning in coal-fired power plants for sustainable operations," Energy Economics, Elsevier, vol. 108(C).
    6. Yan, Shiyu & Lv, Chengwei & Yao, Liming & Hu, Zhineng & Wang, Fengjuan, 2022. "Hybrid dynamic coal blending method to address multiple environmental objectives under a carbon emissions allocation mechanism," Energy, Elsevier, vol. 254(PB).
    7. Hanak, Dawid P. & Kolios, Athanasios J. & Manovic, Vasilije, 2016. "Comparison of probabilistic performance of calcium looping and chemical solvent scrubbing retrofits for CO2 capture from coal-fired power plant," Applied Energy, Elsevier, vol. 172(C), pages 323-336.
    8. Qing Feng & Qian Huang & Qingyan Zheng & Li Lu, 2018. "New Carbon Emissions Allowance Allocation Method Based on Equilibrium Strategy for Carbon Emission Mitigation in the Coal-Fired Power Industry," Sustainability, MDPI, vol. 10(8), pages 1-18, August.
    9. Qian Huang & Qing Feng & Yuan Tian & Li Lu, 2018. "Equilibrium Strategy-Based Optimization Method for Carbon Emission Quota Allocation in Conventional Power Plants," Sustainability, MDPI, vol. 10(9), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, He & Zhang, Yu-fei & Su, Zhi-gang & Wang, Ben, 2017. "A dynamic mathematical model of an ultra-supercritical coal fired once-through boiler-turbine unit," Applied Energy, Elsevier, vol. 189(C), pages 654-666.
    2. Hu, Qing & Huang, Guohe & Cai, Yanpeng & Huang, Ying, 2011. "Feasibility-based inexact fuzzy programming for electric power generation systems planning under dual uncertainties," Applied Energy, Elsevier, vol. 88(12), pages 4642-4654.
    3. Dong, C. & Huang, G.H. & Cai, Y.P. & Liu, Y., 2012. "An inexact optimization modeling approach for supporting energy systems planning and air pollution mitigation in Beijing city," Energy, Elsevier, vol. 37(1), pages 673-688.
    4. Shen, Yafei & Yu, Shili & Ge, Shun & Chen, Xingming & Ge, Xinlei & Chen, Mindong, 2017. "Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale," Energy, Elsevier, vol. 118(C), pages 312-323.
    5. Rizkiana, Jenny & Guan, Guoqing & Widayatno, Wahyu Bambang & Hao, Xiaogang & Li, Xiumin & Huang, Wei & Abudula, Abuliti, 2014. "Promoting effect of various biomass ashes on the steam gasification of low-rank coal," Applied Energy, Elsevier, vol. 133(C), pages 282-288.
    6. Liu, Yingzu & He, Yong & Wang, Zhihua & Xia, Jun & Wan, Kaidi & Whiddon, Ronald & Cen, Kefa, 2018. "Characteristics of alkali species release from a burning coal/biomass blend," Applied Energy, Elsevier, vol. 215(C), pages 523-531.
    7. Zhang, Qian & Li, Qingfeng & Zhang, Linxian & Wang, Zhiqing & Jing, Xuliang & Yu, Zhongliang & Song, Shuangshuang & Fang, Yitian, 2014. "Preliminary study on co-gasification behavior of deoiled asphalt with coal and biomass," Applied Energy, Elsevier, vol. 132(C), pages 426-434.
    8. Santos, Carolina Monteiro & de Oliveira, Leandro Soares & Alves Rocha, Elém Patrícia & Franca, Adriana Silva, 2020. "Thermal conversion of defective coffee beans for energy purposes: Characterization and kinetic modeling," Renewable Energy, Elsevier, vol. 147(P1), pages 1275-1291.
    9. Prasad, Sanjeev K. & Mangaraj, B.K., 2022. "A multi-objective competitive-design framework for fuel procurement planning in coal-fired power plants for sustainable operations," Energy Economics, Elsevier, vol. 108(C).
    10. Dong, Cong & Huang, Guohe & Cai, Yanpeng & Li, Wei & Cheng, Guanhui, 2014. "Fuzzy interval programming for energy and environmental systems management under constraint-violation and energy-substitution effects: A case study for the City of Beijing," Energy Economics, Elsevier, vol. 46(C), pages 375-394.
    11. Ye Liu & Guohe Huang & Yanpeng Cai & Cong Dong, 2011. "An Inexact Mix-Integer Two-Stage Linear Programming Model for Supporting the Management of a Low-Carbon Energy System in China," Energies, MDPI, vol. 4(10), pages 1-30, October.
    12. He, Chao & Giannis, Apostolos & Wang, Jing-Yuan, 2013. "Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior," Applied Energy, Elsevier, vol. 111(C), pages 257-266.
    13. Zhang, Fan & Cai, Yanpeng & Tan, Qian & Wang, Xuan, 2021. "Spatial water footprint optimization of crop planting: A fuzzy multiobjective optimal approach based on MOD16 evapotranspiration products," Agricultural Water Management, Elsevier, vol. 256(C).
    14. Dong, C. & Huang, G.H. & Cai, Y.P. & Xu, Y., 2011. "An interval-parameter minimax regret programming approach for power management systems planning under uncertainty," Applied Energy, Elsevier, vol. 88(8), pages 2835-2845, August.
    15. Kuang, Min & Li, Zhengqi & Liu, Chunlong & Zhu, Qunyi, 2013. "Experimental study on combustion and NOx emissions for a down-fired supercritical boiler with multiple-injection multiple-staging technology without overfire air," Applied Energy, Elsevier, vol. 106(C), pages 254-261.
    16. Zhao, Peitao & Shen, Yafei & Ge, Shifu & Chen, Zhenqian & Yoshikawa, Kunio, 2014. "Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment," Applied Energy, Elsevier, vol. 131(C), pages 345-367.
    17. Bassani, Andrea & Pirola, Carlo & Maggio, Enrico & Pettinau, Alberto & Frau, Caterina & Bozzano, Giulia & Pierucci, Sauro & Ranzi, Eliseo & Manenti, Flavio, 2016. "Acid Gas to Syngas (AG2S™) technology applied to solid fuel gasification: Cutting H2S and CO2 emissions by improving syngas production," Applied Energy, Elsevier, vol. 184(C), pages 1284-1291.
    18. Lu, Jau-Jang & Chen, Wei-Hsin, 2015. "Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis," Applied Energy, Elsevier, vol. 160(C), pages 49-57.
    19. Xu, Shisen & Ren, Yongqiang & Wang, Baomin & Xu, Yue & Chen, Liang & Wang, Xiaolong & Xiao, Tiancun, 2014. "Development of a novel 2-stage entrained flow coal dry powder gasifier," Applied Energy, Elsevier, vol. 113(C), pages 318-323.
    20. Cai, Yanpeng & Applegate, Scott & Yue, Wencong & Cai, Jianying & Wang, Xuan & Liu, Gengyuan & Li, Chunhui, 2017. "A hybrid life cycle and multi-criteria decision analysis approach for identifying sustainable development strategies of Beijing's taxi fleet," Energy Policy, Elsevier, vol. 100(C), pages 314-325.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:133:y:2014:i:c:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.