IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v111y2013icp550-557.html
   My bibliography  Save this article

Estimating power plant start costs in cyclic operation

Author

Listed:
  • Keatley, P.
  • Shibli, A.
  • Hewitt, N.J.

Abstract

In many power systems large thermal generating units, which were primarily designed to resist creep damage caused by base load operation throughout an effective service life of more than 40years, are being operated cyclically as a result of market liberalization and the rapid expansion of intermittent renewable energy sources. This type of off-design operation results in accelerated rates of life consumption due to the initiation of fatigue-related damage mechanisms which these units were not designed to withstand. This issue is of particular concern to the owners and operators of thermal generators in the Irish all-island system because of the significantly increased levels of cycling duty that their units will be required to perform as a result of plans to integrate very high levels of wind power by 2020. The impacts of cyclic operation on unit operating costs, scheduling and availability has largely been overlooked in renewable energy integration studies. The authors draw on the results of recent studies in Ireland and elsewhere to relate fatigue-life consumption (measured in total lifetime starts) and damage accumulation (measured in annual maintenance costs) to create a model which can be used to forecast lifetime hot, warm and cold per-start costs for a typical base load unit in a range of market and wind-penetration scenarios.

Suggested Citation

  • Keatley, P. & Shibli, A. & Hewitt, N.J., 2013. "Estimating power plant start costs in cyclic operation," Applied Energy, Elsevier, vol. 111(C), pages 550-557.
  • Handle: RePEc:eee:appene:v:111:y:2013:i:c:p:550-557
    DOI: 10.1016/j.apenergy.2013.05.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913004340
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.05.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N/A, 2008. "Introductory Remarks," China Report, , vol. 44(1), pages 31-32, February.
    2. Menezes, Flavio M., 2008. "An Introduction to Auction Theory," OUP Catalogue, Oxford University Press, number 9780199275991.
    3. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2011. "The first step towards a 100% renewable energy-system for Ireland," Applied Energy, Elsevier, vol. 88(2), pages 502-507, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Barelli, L. & Desideri, U. & Ottaviano, A., 2015. "Challenges in load balance due to renewable energy sources penetration: The possible role of energy storage technologies relative to the Italian case," Energy, Elsevier, vol. 93(P1), pages 393-405.
    2. Luis Montero & Antonio Bello & Javier Reneses, 2022. "A Review on the Unit Commitment Problem: Approaches, Techniques, and Resolution Methods," Energies, MDPI, vol. 15(4), pages 1-40, February.
    3. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    4. Rusin, Andrzej & Bieniek, Michał & Lipka, Marian, 2016. "Assessment of the rise in the turbine operation risk due to increased cyclicity of the power unit operation," Energy, Elsevier, vol. 96(C), pages 394-403.
    5. Pavičević, Matija & Kavvadias, Konstantinos & Pukšec, Tomislav & Quoilin, Sylvain, 2019. "Comparison of different model formulations for modelling future power systems with high shares of renewables – The Dispa-SET Balkans model," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Vorushylo, Inna & Keatley, Patrick & Shah, Nikhilkumar & Green, Richard & Hewitt, Neil, 2018. "How heat pumps and thermal energy storage can be used to manage wind power: A study of Ireland," Energy, Elsevier, vol. 157(C), pages 539-549.
    7. Eser, Patrick & Singh, Antriksh & Chokani, Ndaona & Abhari, Reza S., 2016. "Effect of increased renewables generation on operation of thermal power plants," Applied Energy, Elsevier, vol. 164(C), pages 723-732.
    8. Vorushylo, I. & Keatley, P. & Hewitt, NJ, 2016. "Most promising flexible generators for the wind dominated market," Energy Policy, Elsevier, vol. 96(C), pages 564-575.
    9. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2017. "Generation expansion planning with high share of renewables of variable output," Applied Energy, Elsevier, vol. 190(C), pages 1275-1288.
    10. Linda Barelli & Gianni Bidini & Fabio Bonucci & Luca Castellini & Simone Castellini & Andrea Ottaviano & Dario Pelosi & Alberto Zuccari, 2018. "Dynamic Analysis of a Hybrid Energy Storage System (H-ESS) Coupled to a Photovoltaic (PV) Plant," Energies, MDPI, vol. 11(2), pages 1-23, February.
    11. Jesse G. Wales & Alexander J. Zolan & William T. Hamilton & Alexandra M. Newman & Michael J. Wagner, 2023. "Combining simulation and optimization to derive operating policies for a concentrating solar power plant," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 119-150, March.
    12. Barelli, Linda & Ottaviano, Andrea, 2015. "Supercharged gas turbine combined cycle: An improvement in plant flexibility and efficiency," Energy, Elsevier, vol. 81(C), pages 615-626.
    13. Arias, B. & Criado, Y.A. & Sanchez-Biezma, A. & Abanades, J.C., 2014. "Oxy-fired fluidized bed combustors with a flexible power output using circulating solids for thermal energy storage," Applied Energy, Elsevier, vol. 132(C), pages 127-136.
    14. Martyna Tomala & Andrzej Rusin & Adam Wojaczek, 2020. "Risk-Based Planning of Diagnostic Testing of Turbines Operating with Increased Flexibility," Energies, MDPI, vol. 13(13), pages 1-16, July.
    15. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    16. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    17. Pierobon, Leonardo & Casati, Emiliano & Casella, Francesco & Haglind, Fredrik & Colonna, Piero, 2014. "Design methodology for flexible energy conversion systems accounting for dynamic performance," Energy, Elsevier, vol. 68(C), pages 667-679.
    18. Yang, Ruizhen & He, Yunze & Zhang, Hong, 2016. "Progress and trends in nondestructive testing and evaluation for wind turbine composite blade," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1225-1250.
    19. Hiyam Farhat & Coriolano Salvini, 2022. "Novel Gas Turbine Challenges to Support the Clean Energy Transition," Energies, MDPI, vol. 15(15), pages 1-17, July.
    20. Devlin, Joseph & Li, Kang & Higgins, Paraic & Foley, Aoife, 2017. "Gas generation and wind power: A review of unlikely allies in the United Kingdom and Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 757-768.
    21. Neshumayev, Dmitri & Rummel, Leo & Konist, Alar & Ots, Arvo & Parve, Teet, 2018. "Power plant fuel consumption rate during load cycling," Applied Energy, Elsevier, vol. 224(C), pages 124-135.
    22. Łukowicz, Henryk & Rusin, Andrzej, 2018. "The impact of the control method of cyclic operation on the power unit efficiency and life," Energy, Elsevier, vol. 150(C), pages 565-574.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buckley Fiona & Hofman Caroline, 2015. "Women in local government: Moving in from the margins," Administration, Sciendo, vol. 63(2), pages 79-99, August.
    2. Lim, Eunjung, 2016. "Multilateral approach to the back end of the nuclear fuel cycle in Asia-Pacific?," Energy Policy, Elsevier, vol. 99(C), pages 158-164.
    3. Williams, Simon J. & Coveney, Catherine M. & Gabe, Jonathan, 2013. "Medicalisation or customisation? Sleep, enterprise and enhancement in the 24/7 society," Social Science & Medicine, Elsevier, vol. 79(C), pages 40-47.
    4. Tyers, Rod, 2014. "Looking inward for transformative growth," China Economic Review, Elsevier, vol. 29(C), pages 166-184.
    5. Dino Falaschetti, 2008. "Can Lobbying Prevent Anticompetitive Outcomes? Evidence On Consumer Monopsony In Telecommunications," Journal of Competition Law and Economics, Oxford University Press, vol. 4(4), pages 1065-1096.
    6. Marcelo Bucheli & Min-Young Kim, 2012. "Political Institutional Change, Obsolescing Legitimacy, and Multinational Corporations," Management International Review, Springer, vol. 52(6), pages 847-877, December.
    7. Chen Tsun Yung & Kuan Chen Tsai, 2013. "Followership: An Important Partner of Leadership," Business and Management Horizons, Macrothink Institute, vol. 1(2), pages 47-55, December.
    8. Koen, Jennifer & Wassenaar, Douglas & Mamotte, Nicole, 2017. "The ‘over-researched community’: An ethics analysis of stakeholder views at two South African HIV prevention research sites," Social Science & Medicine, Elsevier, vol. 194(C), pages 1-9.
    9. Contandriopoulos, Damien & Bilodeau, Henriette, 2009. "The political use of poll results about public support for a privatized healthcare system in Canada," Health Policy, Elsevier, vol. 90(1), pages 104-112, April.
    10. Tonini, Davide & Vadenbo, Carl & Astrup, Thomas Fruergaard, 2017. "Priority of domestic biomass resources for energy: Importance of national environmental targets in a climate perspective," Energy, Elsevier, vol. 124(C), pages 295-309.
    11. Luigi Aldieri & Jonas Grafström & Kristoffer Sundström & Concetto Paolo Vinci, 2019. "Wind Power and Job Creation," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    12. Moraga-González, José L. & Sándor, Zsolt & Wildenbeest, Matthijs R., 2014. "Prices, Product Differentiation, And Heterogeneous Search Costs," IESE Research Papers D/1097, IESE Business School.
    13. Carvalho Lopes, Celia Mendes & Bolfarine, Heleno, 2012. "Random effects in promotion time cure rate models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 75-87, January.
    14. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Lund, Henrik & Thellufsen, Jakob Zinck & Sorknæs, Peter & Mathiesen, Brian Vad & Chang, Miguel & Madsen, Poul Thøis & Kany, Mikkel Strunge & Skov, Iva Ridjan, 2022. "Smart energy Denmark. A consistent and detailed strategy for a fully decarbonized society," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Susana Bernardino & J. Freitas Santos, 2015. "Financing social ventures by crowdfunding: the influence of entrepreneurs’ personality traits," NIPE Working Papers 12/2015, NIPE - Universidade do Minho.
    17. Cerovac, Tin & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2014. "Wind energy integration into future energy systems based on conventional plants – The case study of Croatia," Applied Energy, Elsevier, vol. 135(C), pages 643-655.
    18. Wang, Yongli & Li, Jiapu & Wang, Shuo & Yang, Jiale & Qi, Chengyuan & Guo, Hongzhen & Liu, Ximei & Zhang, Hongqing, 2020. "Operational optimization of wastewater reuse integrated energy system," Energy, Elsevier, vol. 200(C).
    19. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    20. Maruf, Md. Nasimul Islam, 2021. "Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050," Applied Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:111:y:2013:i:c:p:550-557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.