IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v190y2017icp1275-1288.html
   My bibliography  Save this article

Generation expansion planning with high share of renewables of variable output

Author

Listed:
  • Pereira, Sérgio
  • Ferreira, Paula
  • Vaz, A.I.F.

Abstract

This study presents a new generation expansion planning (GEP) incorporating the effects of renewables variable generation on thermal power plants efficiency. An hourly unit commitment problem was integrated in the GEP problem with the overall goal of supporting the selection of future mixes of power plants through long term planning. The problem resulted in a binary mixed integer non-linear cost optimization model. The model application was demonstrated for the design of electricity plans for a 10year planning period under different CO2 assumptions for a thermal, hydroelectric and wind power system. The results were compared with the ones obtained using a traditional GEP model, which assumed average operating conditions for thermal power plants. The scenario analysis shows that the impact of renewables variability on the performance of thermal power plants and on the generation expansion planning is non-negligible. The results suggest that assuming average operating conditions can result on the underestimation of the system costs which highlights the importance of the proposed integrated model to strategic decision making.

Suggested Citation

  • Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2017. "Generation expansion planning with high share of renewables of variable output," Applied Energy, Elsevier, vol. 190(C), pages 1275-1288.
  • Handle: RePEc:eee:appene:v:190:y:2017:i:c:p:1275-1288
    DOI: 10.1016/j.apenergy.2017.01.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917300338
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.01.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Hao & Tang, Bao-Jun & Liao, Hua & Wei, Yi-Ming, 2016. "A multi-period power generation planning model incorporating the non-carbon external costs: A case study of China," Applied Energy, Elsevier, vol. 183(C), pages 1333-1345.
    2. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    3. De Jonghe, Cedric & Delarue, Erik & Belmans, Ronnie & D'haeseleer, William, 2011. "Determining optimal electricity technology mix with high level of wind power penetration," Applied Energy, Elsevier, vol. 88(6), pages 2231-2238, June.
    4. Wierzbowski, Michal & Lyzwa, Wojciech & Musial, Izabela, 2016. "MILP model for long-term energy mix planning with consideration of power system reserves," Applied Energy, Elsevier, vol. 169(C), pages 93-111.
    5. Brouwer, Anne Sjoerd & van den Broek, Machteld & Zappa, William & Turkenburg, Wim C. & Faaij, André, 2016. "Least-cost options for integrating intermittent renewables in low-carbon power systems," Applied Energy, Elsevier, vol. 161(C), pages 48-74.
    6. P Linares & C Romero, 2000. "A multiple criteria decision making approach for electricity planning in Spain: economic versus environmental objectives," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(6), pages 736-743, June.
    7. Keatley, P. & Shibli, A. & Hewitt, N.J., 2013. "Estimating power plant start costs in cyclic operation," Applied Energy, Elsevier, vol. 111(C), pages 550-557.
    8. Hobbs, Benjamin F., 1995. "Optimization methods for electric utility resource planning," European Journal of Operational Research, Elsevier, vol. 83(1), pages 1-20, May.
    9. Lund, H. & Münster, E., 2003. "Management of surplus electricity-production from a fluctuating renewable-energy source," Applied Energy, Elsevier, vol. 76(1-3), pages 65-74, September.
    10. Sadeghi, Hadi & Rashidinejad, Masoud & Abdollahi, Amir, 2017. "A comprehensive sequential review study through the generation expansion planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1369-1394.
    11. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad, 2011. "Large-scale integration of wind power into the existing Chinese energy system," Energy, Elsevier, vol. 36(8), pages 4753-4760.
    12. Eser, Patrick & Singh, Antriksh & Chokani, Ndaona & Abhari, Reza S., 2016. "Effect of increased renewables generation on operation of thermal power plants," Applied Energy, Elsevier, vol. 164(C), pages 723-732.
    13. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "An integrated model for long-term power generation planning toward future smart electricity systems," Applied Energy, Elsevier, vol. 112(C), pages 1424-1437.
    14. Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
    15. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2016. "Optimization modeling to support renewables integration in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 316-325.
    16. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2014. "Short-term electricity planning with increase wind capacity," Energy, Elsevier, vol. 69(C), pages 12-22.
    17. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2015. "A simplified optimization model to short-term electricity planning," Energy, Elsevier, vol. 93(P2), pages 2126-2135.
    18. Broeer, Torsten & Fuller, Jason & Tuffner, Francis & Chassin, David & Djilali, Ned, 2014. "Modeling framework and validation of a smart grid and demand response system for wind power integration," Applied Energy, Elsevier, vol. 113(C), pages 199-207.
    19. Park, Heejung & Baldick, Ross, 2016. "Multi-year stochastic generation capacity expansion planning under environmental energy policy," Applied Energy, Elsevier, vol. 183(C), pages 737-745.
    20. Clancy, J.M. & Gaffney, F. & Deane, J.P. & Curtis, J. & Ó Gallachóir, B.P., 2015. "Fossil fuel and CO2 emissions savings on a high renewable electricity system – A single year case study for Ireland," Energy Policy, Elsevier, vol. 83(C), pages 151-164.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    3. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    4. Vidal-Amaro, Juan José & Østergaard, Poul Alberg & Sheinbaum-Pardo, Claudia, 2015. "Optimal energy mix for transitioning from fossil fuels to renewable energy sources – The case of the Mexican electricity system," Applied Energy, Elsevier, vol. 150(C), pages 80-96.
    5. Oree, Vishwamitra & Sayed Hassen, Sayed Z., 2016. "A composite metric for assessing flexibility available in conventional generators of power systems," Applied Energy, Elsevier, vol. 177(C), pages 683-691.
    6. Carlos Roberto de Sousa Costa & Paula Ferreira, 2023. "A Review on the Internalization of Externalities in Electricity Generation Expansion Planning," Energies, MDPI, vol. 16(4), pages 1-19, February.
    7. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2015. "A simplified optimization model to short-term electricity planning," Energy, Elsevier, vol. 93(P2), pages 2126-2135.
    8. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
    9. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2016. "Optimization modeling to support renewables integration in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 316-325.
    10. Rode, David C. & Fischbeck, Paul S., 2018. "Reduced-form models for power market risk analysis," Applied Energy, Elsevier, vol. 228(C), pages 1640-1655.
    11. Kwon, Pil Seok & Østergaard, Poul, 2014. "Assessment and evaluation of flexible demand in a Danish future energy scenario," Applied Energy, Elsevier, vol. 134(C), pages 309-320.
    12. Hong, Lixuan & Lund, Henrik & Möller, Bernd, 2012. "The importance of flexible power plant operation for Jiangsu's wind integration," Energy, Elsevier, vol. 41(1), pages 499-507.
    13. Trotter, Philipp A. & Cooper, Nathanial J. & Wilson, Peter R., 2019. "A multi-criteria, long-term energy planning optimisation model with integrated on-grid and off-grid electrification – The case of Uganda," Applied Energy, Elsevier, vol. 243(C), pages 288-312.
    14. Curtis, John & Lynch, Muireann Á. & Zubiate, Laura, 2016. "The impact of the North Atlantic Oscillation on electricity markets: A case study on Ireland," Energy Economics, Elsevier, vol. 58(C), pages 186-198.
    15. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    16. De Jonghe, C. & Hobbs, B. F. & Belmans, R., 2011. "Integrating short-term demand response into long-term investment planning," Cambridge Working Papers in Economics 1132, Faculty of Economics, University of Cambridge.
    17. Afful-Dadzie, Anthony & Afful-Dadzie, Eric & Awudu, Iddrisu & Banuro, Joseph Kwaku, 2017. "Power generation capacity planning under budget constraint in developing countries," Applied Energy, Elsevier, vol. 188(C), pages 71-82.
    18. Krajacic, Goran & Duic, Neven & Carvalho, Maria da Graça, 2011. "How to achieve a 100% RES electricity supply for Portugal?," Applied Energy, Elsevier, vol. 88(2), pages 508-517, February.
    19. Ma, Tao & Østergaard, Poul Alberg & Lund, Henrik & Yang, Hongxing & Lu, Lin, 2014. "An energy system model for Hong Kong in 2020," Energy, Elsevier, vol. 68(C), pages 301-310.
    20. Cany, C. & Mansilla, C. & Mathonnière, G. & da Costa, P., 2018. "Nuclear contribution to the penetration of variable renewable energy sources in a French decarbonised power mix," Energy, Elsevier, vol. 150(C), pages 544-555.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:190:y:2017:i:c:p:1275-1288. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.