IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v262y2022ics0378377421006533.html
   My bibliography  Save this article

Environmental efficiency of wine grape production in Mendoza, Argentina

Author

Listed:
  • Riera, Félix Sebastián
  • Brümmer, Bernhard

Abstract

The natural characteristics are a valuable asset for the production of wine grapes, but the availability of quality water and the composition of the soil are decisive in semi-arid areas. The province of Mendoza is a prestigious region for the production of wine that is going through a period of water scarcity, which implies a greater use of groundwater that could compromise the availability of resources and trigger salinity levels. This paper evaluates the environmental performance of winegrowers in the face of a productive threat such as the saline content in irrigation water. We estimate environmental efficiency based on a directional output distance function using the salinity hazard of irrigation as an undesirable output. The average environmental performance is 0.88 and it can be reduced by participating in producer groups, receiving technical assistance, increasing the density of the vineyard, and receiving an energy subsidy for irrigation. In addition, the shadow price of the salinity hazard reveals that higher salinity content in irrigation water and soil characteristics cause excessive irrigation at the expense of environmental and economic performance. Furthermore, the pre-existing market price relationship, water balance and district characteristics can deflate shadow prices, but only vineyards with joint water sources can benefit from this.

Suggested Citation

  • Riera, Félix Sebastián & Brümmer, Bernhard, 2022. "Environmental efficiency of wine grape production in Mendoza, Argentina," Agricultural Water Management, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421006533
    DOI: 10.1016/j.agwat.2021.107376
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421006533
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.107376?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernandez C. & Koop G. & Steel M.F.J., 2002. "Multiple-Output Production With Undesirable Outputs: An Application to Nitrogen Surplus in Agriculture," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 432-442, June.
    2. Francesc Hernández-Sancho & Birguy Lamizana-Diallo & William Ingram, 2017. "Valuing environmental and health impacts from no action in wastewater management," Chapters, in: Tihomir Ancev & M. A.S. Azad & Francesc Hernández-Sancho (ed.), New Directions in Productivity Measurement and Efficiency Analysis, chapter 10, pages 217-231, Edward Elgar Publishing.
    3. Tihomir Ancev & M. A.S. Azad & Francesc Hernández-Sancho (ed.), 2017. "New Directions in Productivity Measurement and Efficiency Analysis," Books, Edward Elgar Publishing, number 17409.
    4. Njuki, Eric & Bravo-Ureta, Boris E. & Mukherjee, Deep, 2016. "The Good and the Bad: Environmental Efficiency in Northeastern U.S. Dairy Farming," Agricultural and Resource Economics Review, Cambridge University Press, vol. 45(1), pages 22-43, April.
    5. Rafael Cuesta & José Zofío, 2005. "Hyperbolic Efficiency and Parametric Distance Functions: With Application to Spanish Savings Banks," Journal of Productivity Analysis, Springer, vol. 24(1), pages 31-48, September.
    6. Hung-jen Wang & Peter Schmidt, 2002. "One-Step and Two-Step Estimation of the Effects of Exogenous Variables on Technical Efficiency Levels," Journal of Productivity Analysis, Springer, vol. 18(2), pages 129-144, September.
    7. Rolf Färe & Michael Vardanyan, 2016. "A note on parameterizing input distance functions: does the choice of a functional form matter?," Journal of Productivity Analysis, Springer, vol. 45(2), pages 121-130, April.
    8. Antonio Alvarez & Christine Amsler & Luis Orea & Peter Schmidt, 2006. "Interpreting and Testing the Scaling Property in Models where Inefficiency Depends on Firm Characteristics," Journal of Productivity Analysis, Springer, vol. 25(3), pages 201-212, June.
    9. Bravo-Ureta, Boris E. & Jara-Rojas, Roberto & Lachaud, Michee A. & Moreira L., Victor H. & Scheierling, Susanne M., 2015. "Water and Farm Efficiency: Insights from the Frontier Literature," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 206076, Agricultural and Applied Economics Association.
    10. Huang, Wei & Bruemmer, Bernhard & Huntsinger, Lynn, 2016. "Incorporating measures of grassland productivity into efficiency estimates for livestock grazing on the Qinghai-Tibetan Plateau in China," Ecological Economics, Elsevier, vol. 122(C), pages 1-11.
    11. Atakelty Hailu & Terrence S. Veeman, 2001. "Non-parametric Productivity Analysis with Undesirable Outputs: An Application to the Canadian Pulp and Paper Industry," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(3), pages 605-616.
    12. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    13. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
    14. Eric Njuki & Boris E. Bravo-Ureta, 2015. "The Economic Costs of Environmental Regulation in U.S. Dairy Farming: A Directional Distance Function Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(4), pages 1087-1106.
    15. V. Eldon Ball & Jean-Pierre Butault & Carlos San Juan Mesonada, 2004. "Measuring Real Capital Input in OECD Agriculture," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 52(3), pages 351-370, November.
    16. Stijn Reinhard & C.A. Knox Lovell & Geert Thijssen, 1999. "Econometric Estimation of Technical and Environmental Efficiency: An Application to Dutch Dairy Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 44-60.
    17. Rolf Färe & Shawna Grosskopf, 2000. "Theory and Application of Directional Distance Functions," Journal of Productivity Analysis, Springer, vol. 13(2), pages 93-103, March.
    18. Tiho Ancev & M.A. Samad Azad & Mahmuda Akter, 2017. "Environmentally adjusted productivity and efficiency: a review of concepts, methods and empirical work," Chapters, in: Tihomir Ancev & M. A.S. Azad & Francesc Hernández-Sancho (ed.), New Directions in Productivity Measurement and Efficiency Analysis, chapter 2, pages 9-58, Edward Elgar Publishing.
    19. Parmeter, Christopher F. & Kumbhakar, Subal C., 2014. "Efficiency Analysis: A Primer on Recent Advances," Foundations and Trends(R) in Econometrics, now publishers, vol. 7(3-4), pages 191-385, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salman, Muhammad & Long, Xingle & Wang, Guimei & Zha, Donglan, 2022. "Paris climate agreement and global environmental efficiency: New evidence from fuzzy regression discontinuity design," Energy Policy, Elsevier, vol. 168(C).
    2. Noa Ohana-Levi & Yishai Netzer, 2023. "Long-Term Trends of Global Wine Market," Agriculture, MDPI, vol. 13(1), pages 1-26, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Holtkamp, A.M. & Brummer, B., 2018. "Environmental efficiency of smallholder rubber production," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277518, International Association of Agricultural Economists.
    2. Wei Huang & Bernhard Bruemmer, 2017. "Balancing economic revenue and grazing pressure of livestock grazing on the Qinghai–Tibetan–Plateau," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 61(4), pages 645-662, October.
    3. Magambo, Isaiah & Dikgang, Johane & Gelo, Dambala & Tregenna, Fiona, 2021. "Environmental and Technical Efficiency in Large Gold Mines in Developing Countries," MPRA Paper 108068, University Library of Munich, Germany.
    4. Emir Malikov & Raushan Bokusheva & Subal C. Kumbhakar, 2018. "A hedonic-output-index-based approach to modeling polluting technologies," Empirical Economics, Springer, vol. 54(1), pages 287-308, February.
    5. Emir Malikov & Subal C. Kumbhakar & Efthymios G. Tsionas, 2015. "Bayesian Approach to Disentangling Technical and Environmental Productivity," Econometrics, MDPI, vol. 3(2), pages 1-23, June.
    6. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    7. Magambo, Isaiah Hubert & Dikgang, Johane & Gelo, Dambala & Tregenna, Fiona, 2021. "Dynamic Technical and Environmental Efficiency Performance of Large Gold Mines in Developing Countries," EconStor Preprints 235859, ZBW - Leibniz Information Centre for Economics.
    8. Njuki, Eric & Bravo-Ureta, Boris, 2014. "A Bayesian Approach to Analyzing the Economic Costs of Environmental Regulation in U.S. Dairy Farming," Working Papers 33, University of Connecticut, Department of Agricultural and Resource Economics, Charles J. Zwick Center for Food and Resource Policy.
    9. Feng, Guohua & Serletis, Apostolos, 2014. "Undesirable outputs and a primal Divisia productivity index based on the directional output distance function," Journal of Econometrics, Elsevier, vol. 183(1), pages 135-146.
    10. Debdatta Pal & Subrata K. Mitra, 2018. "The efficiency of microfinance institutions with problem loans: A directional distance function approach," Computational and Mathematical Organization Theory, Springer, vol. 24(3), pages 285-307, September.
    11. Figge, Frank & Hahn, Tobias & Barkemeyer, Ralf, 2014. "The If, How and Where of assessing sustainable resource use," Ecological Economics, Elsevier, vol. 105(C), pages 274-283.
    12. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    13. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    14. Christopher F. Parmeter & Hung-Jen Wang & Subal C. Kumbhakar, 2017. "Nonparametric estimation of the determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 47(3), pages 205-221, June.
    15. Silva, Felipe & Fulginiti, Lilyan & Perrin, Richard, 2016. "Trade-off between amazon forest and agriculture in Brazil – shadow price and their substitution estimative for 2006," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235800, Agricultural and Applied Economics Association.
    16. Kumbhakar, Subal C. & Tsionas, Efthymios G., 2016. "The good, the bad and the technology: Endogeneity in environmental production models," Journal of Econometrics, Elsevier, vol. 190(2), pages 315-327.
    17. Trinks, Arjan & Mulder, Machiel & Scholtens, Bert, 2020. "An Efficiency Perspective on Carbon Emissions and Financial Performance," Ecological Economics, Elsevier, vol. 175(C).
    18. Alfredsson, Eva & Månsson, Jonas & Vikström, Peter, 2016. "Internalising external environmental effects in efficiency analysis," Economic Analysis and Policy, Elsevier, vol. 51(C), pages 22-31.
    19. Christopher F. Parmeter, 2018. "Estimation of the two-tiered stochastic frontier model with the scaling property," Journal of Productivity Analysis, Springer, vol. 49(1), pages 37-47, February.
    20. Gary Koop & Lise Tole, 2008. "What is the environmental performance of firms overseas? An empirical investigation of the global gold mining industry," Journal of Productivity Analysis, Springer, vol. 30(2), pages 129-143, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421006533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.