IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v137y2014icp1-14.html
   My bibliography  Save this article

A role playing game to address future water management issues in a large irrigated system: Experience from Mali

Author

Listed:
  • Hertzog, Thomas
  • Poussin, Jean-Christophe
  • Tangara, Bréhima
  • Kouriba, Indé
  • Jamin, Jean-Yves

Abstract

This paper reports on an experiment undertaken in the Office du Niger irrigation scheme (100,000ha) in Mali, where the unprecedented development of irrigation driven by large scale investors is dramatically increasing uncertainty surrounding future water management. Coping with future uncertainty in irrigated systems is essential but existing approaches based on scenarios and decision support systems are mainly expert-driven, making them difficult for local users to understand and use on their own. The aim of this study was to design a participatory approach to help local and national stakeholders understand the possible future consequences for water management of scenarios they had built themselves in previous workshops. A role playing game called FOWIS (Future of water in irrigated systems) was designed for this purpose. Two groups (decision makers and local actors) took part and played the roles of family farmers, large scale investors, or the manager of the irrigation scheme. Playing FOWIS increased the players’ awareness of each others’ strategies and of land development issues, crop choices, and water management. In the local actors’ group, applying land development strategies and choosing crops while failing to account for the inevitable increase in water demand led to serious water crises: total demand exceeded water availability by 75%, and the indicator of adequacy dropped to 0.5 for many players. In the decision makers’ group, applying a collective strategy to limit water demand, as stipulated in their best case scenario, resulted in an equitable water supply.

Suggested Citation

  • Hertzog, Thomas & Poussin, Jean-Christophe & Tangara, Bréhima & Kouriba, Indé & Jamin, Jean-Yves, 2014. "A role playing game to address future water management issues in a large irrigated system: Experience from Mali," Agricultural Water Management, Elsevier, vol. 137(C), pages 1-14.
  • Handle: RePEc:eee:agiwat:v:137:y:2014:i:c:p:1-14
    DOI: 10.1016/j.agwat.2014.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414000420
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George, Biju & Malano, Hector & Davidson, Brian & Hellegers, Petra & Bharati, Luna & Massuel, Sylvain, 2011. "An integrated hydro-economic modelling framework to evaluate water allocation strategies II: Scenario assessment," Agricultural Water Management, Elsevier, vol. 98(5), pages 747-758, March.
    2. Green, Kesten C., 2002. "Forecasting decisions in conflict situations: a comparison of game theory, role-playing, and unaided judgement," International Journal of Forecasting, Elsevier, vol. 18(3), pages 321-344.
    3. Kay, Melvyn, 1990. "Recent developments for improving water management in surface and overhead irrigation," Agricultural Water Management, Elsevier, vol. 17(1-3), pages 7-23, January.
    4. Vandersypen, K. & Keita, A.C.T. & Coulibaly, B. & Raes, D. & Jamin, J.-Y., 2007. "Drainage problems in the rice schemes of the Office du Niger (Mali) in relation to water management," Agricultural Water Management, Elsevier, vol. 89(1-2), pages 153-160, April.
    5. Rajabu, Kossa R.M., 2007. "Use and impacts of the river basin game in implementing integrated water resources management in Mkoji sub-catchment in Tanzania," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 63-72, December.
    6. Djibril Aw & Geert Diemer, 2005. "Making a Large Irrigation Scheme Work : A Case Study from Mali," World Bank Publications - Books, The World Bank Group, number 7320, December.
    7. K. Vandersypen & B. Verbist & A. Keita & D. Raes & J.-Y. Jamin, 2009. "Linking Performance and Collective Action—the Case of the Office du Niger Irrigation Scheme in Mali," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(1), pages 153-168, January.
    8. Patrick D'aquino & Christophe Le Page & François Bousquet & Alassane Bah, 2003. "Using Self-Designed Role-Playing Games and a Multi-Agent System to Empower a Local Decision-Making Process for Land Use Management: the SelfCormas Experiment in Senegal," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 6(3), pages 1-5.
    9. Michel Etienne, 2003. "SYLVOPAST: a Multiple Target Role-Playing Game to Assess Negotiation Processes in Sylvopastoral Management Planning," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 6(2), pages 1-5.
    10. Burte, Julien & Jamin, Jean-Yves & Coudrain, Anne & Frischkorn, Horst & Martins, Eduardo Sávio, 2009. "Simulations of multipurpose water availability in a semi-arid catchment under different management strategies," Agricultural Water Management, Elsevier, vol. 96(8), pages 1181-1190, August.
    11. Mira da Silva, L. & Park, J. R. & Keatinge, J. D. H. & Pinto, P. A., 2001. "I. A decision support system to improve planning and management in large irrigation schemes," Agricultural Water Management, Elsevier, vol. 51(3), pages 187-201, November.
    12. De Nys, Erwin & Le Gal, Pierre-Yves & Raes, Dirk & Ana, Eliseo, 2008. "WaDI (water delivery for irrigation): A simulation tool to address strategic interaction of water demand and supply in irrigation schemes," Agricultural Water Management, Elsevier, vol. 95(3), pages 224-232, March.
    13. Lankford, B., 2004. "The river basin game: A water dialogue tool," IWMI Working Papers H036026, International Water Management Institute.
    14. de Fraiture, Charlotte & Wichelns, Dennis, 2010. "Satisfying future water demands for agriculture," Agricultural Water Management, Elsevier, vol. 97(4), pages 502-511, April.
    15. Vandersypen, Klaartje & Bengaly, Kongotigui & Keita, Abdoulaye C.T. & Sidibe, Souleymane & Raes, Dirk & Jamin, Jean-Yves, 2006. "Irrigation performance at tertiary level in the rice schemes of the Office du Niger (Mali): Adequate water delivery through over-supply," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 144-152, May.
    16. Xu, Hailiang & Ye, Mao & Li, Jimei, 2008. "The water transfer effects on agricultural development in the lower Tarim River, Xinjiang of China," Agricultural Water Management, Elsevier, vol. 95(1), pages 59-68, January.
    17. Anne Dray & Pascal Perez & Natalie Jones & Christophe Le Page & Patrick D'aquino & Ian White & Titeem Auatabu, 2006. "The AtollGame Experience: from Knowledge Engineering to a Computer-Assisted Role Playing Game," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(1), pages 1-6.
    18. Olivier Barreteau & François Bousquet & Jean-Marie Attonaty, 2001. "Role-Playing Games for Opening the Black Box of Multi-Agent Systems: Method and Lessons of Its Application to Senegal River Valley Irrigated Systems," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 4(2), pages 1-5.
    19. Pereira, Luis Santos & Oweis, Theib & Zairi, Abdelaziz, 2002. "Irrigation management under water scarcity," Agricultural Water Management, Elsevier, vol. 57(3), pages 175-206, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bartels, Lara & Falk, Thomas & Duche, Vishwambhar & Vollan, Björn, 2022. "Experimental games in transdisciplinary research: The potential importance of individual payments," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    2. Liaqat, Umar Waqas & Awan, Usman Khalid & McCabe, Matthew Francis & Choi, Minha, 2016. "A geo-informatics approach for estimating water resources management components and their interrelationships," Agricultural Water Management, Elsevier, vol. 178(C), pages 89-105.
    3. Michalscheck, Mirja & Groot, Jeroen C.J. & Fischer, Gundula & Tittonell, Pablo, 2020. "Land use decisions: By whom and to whose benefit? A serious game to uncover dynamics in farm land allocation at household level in Northern Ghana," Land Use Policy, Elsevier, vol. 91(C).
    4. Clémence Moreau & Cécile Barnaud & Raphaël Mathevet, 2019. "Conciliate Agriculture with Landscape and Biodiversity Conservation: A Role-Playing Game to Explore Trade-Offs among Ecosystem Services through Social Learning," Sustainability, MDPI, vol. 11(2), pages 1-20, January.
    5. Falk, Thomas & Zhang, Wei & Meinzen-Dick, Ruth Suseela & Bartels, Lara, 2021. "Games for triggering collective change in natural resource management: A conceptual framework and insights from four cases from India," IFPRI discussion papers 1995, International Food Policy Research Institute (IFPRI).
    6. Muhammad Mohsin Waqas & Muhammad Waseem & Sikandar Ali & Megersa Kebede Leta & Adnan Noor Shah & Usman Khalid Awan & Syed Hamid Hussain Shah & Tao Yang & Sami Ullah, 2021. "Evaluating the Spatio-Temporal Distribution of Irrigation Water Components for Water Resources Management Using Geo-Informatics Approach," Sustainability, MDPI, vol. 13(15), pages 1-20, August.
    7. Falk, Thomas & Kumar, Shalander & Srigiri, Srinivasa, 2019. "Experimental games for developing institutional capacity to manage common water infrastructure in India," Agricultural Water Management, Elsevier, vol. 221(C), pages 260-269.
    8. Danyang Di & Zening Wu & Huiliang Wang & Cuimei Lv, 2020. "A Double-Layer Dynamic Differential Game Model for the Optimal Trading Quantity of Water and Price Setting in Water Rights Transactions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 245-262, January.
    9. Kengo Suzuki & Ryohei Ishiwata, 2022. "Impact of a Carbon Tax on Energy Transition in a Deregulated Market: A Game-Based Experimental Approach," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    10. Bin Yang & Jun He, 2021. "Global Land Grabbing: A Critical Review of Case Studies across the World," Land, MDPI, vol. 10(3), pages 1-19, March.
    11. Robert-Jan Den Haan & Mascha C. Van der Voort, 2018. "On Evaluating Social Learning Outcomes of Serious Games to Collaboratively Address Sustainability Problems: A Literature Review," Sustainability, MDPI, vol. 10(12), pages 1-26, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. García-Barrios, L.E. & Speelman, E.N. & Pimm, M.S., 2008. "An educational simulation tool for negotiating sustainable natural resource management strategies among stakeholders with conflicting interests," Ecological Modelling, Elsevier, vol. 210(1), pages 115-126.
    2. Nygaard, Ivan & Dembelé, Filifing & Daou, Ibrahima & Mariko, Adama & Kamissoko, Famakan & Coulibaly, Nanourou & Borgstrøm, Rasmus L. & Bruun, Thilde Beck, 2016. "Lignocellulosic residues for production of electricity, biogas or second generation biofuel: A case study of technical and sustainable potential of rice straw in Mali," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 202-212.
    3. Paul Guyot & Shinichi Honiden, 2006. "Agent-Based Participatory Simulations: Merging Multi-Agent Systems and Role-Playing Games," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 9(4), pages 1-8.
    4. Barnaud, Cécile & Bousquet, François & Trebuil, Guy, 2008. "Multi-agent simulations to explore rules for rural credit in a highland farming community of Northern Thailand," Ecological Economics, Elsevier, vol. 66(4), pages 615-627, July.
    5. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    6. Falk, Thomas & Kumar, Shalander & Srigiri, Srinivasa, 2019. "Experimental games for developing institutional capacity to manage common water infrastructure in India," Agricultural Water Management, Elsevier, vol. 221(C), pages 260-269.
    7. Minh Nguyen-Duc & Alexis Drogoul, 2007. "Using Computational Agents to Design Participatory Social Simulations," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(4), pages 1-5.
    8. March, Hug & Therond, Olivier & Leenhardt, Delphine, 2012. "Water futures: Reviewing water-scenario analyses through an original interpretative framework," Ecological Economics, Elsevier, vol. 82(C), pages 126-137.
    9. Olivier Barreteau & G. Abrami, 2007. "Variable time scales, agent-based models, and role-playing games: The PIEPLUE river basin management game," Post-Print hal-00453892, HAL.
    10. Joffre, Olivier M. & Bosma, Roel H. & Ligtenberg, Arend & Tri, Van Pham Dang & Ha, Tran Thi Phung & Bregt, Arnold K., 2015. "Combining participatory approaches and an agent-based model for better planning shrimp aquaculture," Agricultural Systems, Elsevier, vol. 141(C), pages 149-159.
    11. Diana Adamatti & Jaime Simão Sichman & Helder Coelho, 2009. "An Analysis of the Insertion of Virtual Players in GMABS Methodology Using the Vip-JogoMan Prototype," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(3), pages 1-7.
    12. Yu, Yang & Yu, Ruide & Chen, Xi & Yu, Guoan & Gan, Miao & Disse, Markus, 2017. "Agricultural water allocation strategies along the oasis of Tarim River in Northwest China," Agricultural Water Management, Elsevier, vol. 187(C), pages 24-36.
    13. Boschetti, Fabio & Richert, Claire & Walker, Iain & Price, Jennifer & Dutra, Leo, 2012. "Assessing attitudes and cognitive styles of stakeholders in environmental projects involving computer modelling," Ecological Modelling, Elsevier, vol. 247(C), pages 98-111.
    14. Rajabu, Kossa R.M., 2007. "Use and impacts of the river basin game in implementing integrated water resources management in Mkoji sub-catchment in Tanzania," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 63-72, December.
    15. Falk, Thomas & Zhang, Wei & Meinzen-Dick, Ruth Suseela & Bartels, Lara, 2021. "Games for triggering collective change in natural resource management: A conceptual framework and insights from four cases from India," IFPRI discussion papers 1995, International Food Policy Research Institute (IFPRI).
    16. Olivier Barreteau & Patrice Garin & Alexandre Dumontier & Geraldine Abrami & Flavie Cernesson, 2003. "Agent-Based Facilitation of Water Allocation: Case Study in the Drome River Valley," Group Decision and Negotiation, Springer, vol. 12(5), pages 441-461, September.
    17. Christophe Le Page & Nicolas Becu & Pierre Bommel & François Bousquet, 2012. "Participatory Agent-Based Simulation for Renewable Resource Management: The Role of the Cormas Simulation Platform to Nurture a Community of Practice," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 15(1), pages 1-10.
    18. Dinar, Ariel & Farolfi, Stefano & Patrone, Fioravante & Rowntree, Kate, 2006. "TO NEGOTIATE OR TO GAME THEORIZE: Negotiation vs. Game Theory Outcomes for Water Allocation Problems in the Kat Basin, South Africa," Working Papers 60888, University of Pretoria, Department of Agricultural Economics, Extension and Rural Development.
    19. Al Zayed, Islam Sabry & Elagib, Nadir Ahmed & Ribbe, Lars & Heinrich, Jürgen, 2016. "Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study," Agricultural Water Management, Elsevier, vol. 177(C), pages 66-76.
    20. Andarzian, B. & Bannayan, M. & Steduto, P. & Mazraeh, H. & Barati, M.E. & Barati, M.A. & Rahnama, A., 2011. "Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran," Agricultural Water Management, Elsevier, vol. 100(1), pages 1-8.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:137:y:2014:i:c:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.