IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v17y2013i5p573-617n3.html
   My bibliography  Save this article

Determining the number of global and country-specific factors in the euro area

Author

Listed:
  • Dias Francisco
  • Rua António

    (Economics Research Department, Banco de Portugal, Lisboa, Portugal)

  • Pinheiro Maximiano

    (ISEG, Technical University of Lisbon and Banco de Portugal)

Abstract

With the adoption of a single currency and a common monetary policy, the assessment of the existence of common macroeconomic factors driving the euro area as a whole is of key importance. In this paper, we try to contribute to this debate by admitting an approximate factor model with a common component comprising global and country-specific factors. Although it is arguable to allow for common factors shared by all the euro area member countries in the context of the European economic integration, it is also reasonable to admit that there may be country-specific factors. Hence, we end up with a two-level factor model allowing for both global and country-specific factors. We discuss the consistency of the principal components estimator within such framework and propose criteria for determining the number of global and group-specific factors. The consistency of the suggested criteria is established and the small sample properties are assessed through Monte Carlo simulations. Resorting to large datasets for the four major euro area countries, we find evidence of the existence of both global and country-specific factors.

Suggested Citation

  • Dias Francisco & Rua António & Pinheiro Maximiano, 2013. "Determining the number of global and country-specific factors in the euro area," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(5), pages 573-617, December.
  • Handle: RePEc:bpj:sndecm:v:17:y:2013:i:5:p:573-617:n:3
    DOI: 10.1515/snde-2012-0031
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/snde-2012-0031
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/snde-2012-0031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    2. Jakob De Haan & Robert Inklaar & Richard Jong‐A‐Pin, 2008. "Will Business Cycles In The Euro Area Converge? A Critical Survey Of Empirical Research," Journal of Economic Surveys, Wiley Blackwell, vol. 22(2), pages 234-273, April.
    3. James H. Stock & Mark W. Watson, 1993. "Business Cycles, Indicators, and Forecasting," NBER Books, National Bureau of Economic Research, Inc, number stoc93-1, March.
    4. Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2012. "A Quasi–Maximum Likelihood Approach for Large, Approximate Dynamic Factor Models," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1014-1024, November.
    5. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    6. Norrbin, Stefan C. & Schlagenhauf, Don E., 1996. "The role of international factors in the business cycle: A multi-country study," Journal of International Economics, Elsevier, vol. 40(1-2), pages 85-104, February.
    7. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    8. Stock, James H. & Watson, Mark W. (ed.), 1993. "Business Cycles, Indicators, and Forecasting," National Bureau of Economic Research Books, University of Chicago Press, edition 1, number 9780226774886, December.
    9. Roll, Richard & Ross, Stephen A, 1980. "An Empirical Investigation of the Arbitrage Pricing Theory," Journal of Finance, American Finance Association, vol. 35(5), pages 1073-1103, December.
    10. Giannone, Domenico & Reichlin, Lucrezia & Sala, Luca, 2006. "VARs, common factors and the empirical validation of equilibrium business cycle models," Journal of Econometrics, Elsevier, vol. 132(1), pages 257-279, May.
    11. M. Ayhan Kose & Christopher Otrok & Charles H. Whiteman, 2003. "International Business Cycles: World, Region, and Country-Specific Factors," American Economic Review, American Economic Association, vol. 93(4), pages 1216-1239, September.
    12. Massimiliano Marcellino & Carlo A. Favero & Francesca Neglia, 2005. "Principal components at work: the empirical analysis of monetary policy with large data sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(5), pages 603-620.
    13. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
    14. Amengual, Dante & Watson, Mark W., 2007. "Consistent Estimation of the Number of Dynamic Factors in a Large N and T Panel," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 91-96, January.
    15. Ben S. Bernanke & Jean Boivin & Piotr Eliasz, 2005. "Measuring the Effects of Monetary Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 120(1), pages 387-422.
    16. Connor, Gregory & Korajczyk, Robert A., 1986. "Performance measurement with the arbitrage pricing theory : A new framework for analysis," Journal of Financial Economics, Elsevier, vol. 15(3), pages 373-394, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon Freyaldenhoven, 2020. "Identification Through Sparsity in Factor Models," Working Papers 20-25, Federal Reserve Bank of Philadelphia.
    2. Choi, In & Lin, Rui & Shin, Yongcheol, 2023. "Canonical correlation-based model selection for the multilevel factors," Journal of Econometrics, Elsevier, vol. 233(1), pages 22-44.
    3. Simon Freyaldenhoven, 2017. "A Generalized Factor Model with Local Factors," 2017 Papers pfr361, Job Market Papers.
    4. In Choi & Dukpa Kim & Yun Jung Kim & Noh‐Sun Kwark, 2018. "A multilevel factor model: Identification, asymptotic theory and applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 355-377, April.
    5. Freyaldenhoven, Simon, 2022. "Factor models with local factors — Determining the number of relevant factors," Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
    6. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.
    7. Kim Dukpa & Kim Yunjung & Bak Yuhyeon, 2017. "Multi-level factor analysis of bond risk premia," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 21(5), pages 1-19, December.
    8. António Rua & Francisco Dias, 2020. "A non-hierarchical dynamic factor model for three-way data," Working Papers w202007, Banco de Portugal, Economics and Research Department.
    9. Byoungsoo Cho, 2020. "The Monetary Policy Reaction Function in Korea with Multi-level Factors," Korean Economic Review, Korean Economic Association, vol. 36, pages 353-376.
    10. Matteo Barigozzi & Marc Hallin & Stefano Soccorsi, 2017. "Identification of Global and National Shocks in International Financial Markets via General Dynamic Factor Models," Working Papers ECARES ECARES 2017-10, ULB -- Universite Libre de Bruxelles.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. António Rua & Francisco Craveiro Dias, 2008. "Determining the number of factors in approximate factor models with global and group-specific factors," Working Papers w200809, Banco de Portugal, Economics and Research Department.
    2. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    3. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    4. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    5. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
    6. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
    7. Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
    8. Forni, Mario & Cavicchioli, Maddalena & Lippi, Marco & Zaffaroni, Paolo, 2016. "Eigenvalue Ratio Estimators for the Number of Common Factors," CEPR Discussion Papers 11440, C.E.P.R. Discussion Papers.
    9. Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," Discussion Papers of DIW Berlin 1351, DIW Berlin, German Institute for Economic Research.
    10. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    11. Bork, Lasse, 2009. "Estimating US Monetary Policy Shocks Using a Factor-Augmented Vector Autoregression: An EM Algorithm Approach," Finance Research Group Working Papers F-2009-03, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    12. Viktors Ajevskis & Gundars Davidsons, 2008. "Dynamic Factor Models in Forecasting Latvia's Gross Domestic Product," Working Papers 2008/02, Latvijas Banka.
    13. Mario Forni & Marc Hallin & Marco Lippi & Paolo Zaffaroni, 2011. "One-Sided Representations of Generalized Dynamic Factor Models," Working Papers ECARES ECARES 2011-019, ULB -- Universite Libre de Bruxelles.
    14. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    15. George Kapetanios & Massimiliano Marcellino, 2009. "A parametric estimation method for dynamic factor models of large dimensions," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 208-238, March.
    16. Borus Jungbacker & Siem Jan Koopman, 2008. "Likelihood-based Analysis for Dynamic Factor Models," Tinbergen Institute Discussion Papers 08-007/4, Tinbergen Institute, revised 20 Mar 2014.
    17. Branimir, Jovanovic & Magdalena, Petrovska, 2010. "Forecasting Macedonian GDP: Evaluation of different models for short-term forecasting," MPRA Paper 43162, University Library of Munich, Germany.
    18. Pilar Poncela & Esther Ruiz, 2016. "Small- Versus Big-Data Factor Extraction in Dynamic Factor Models: An Empirical Assessment," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 401-434, Emerald Group Publishing Limited.
    19. Marc Hallin & Roman Liska, 2008. "Dynamic Factors in the Presence of Block Structure," Working Papers ECARES 2008_012, ULB -- Universite Libre de Bruxelles.
    20. Massimiliano Marcellino & George Kapetanios, 2006. "The Role of Search Frictions and Bargaining for Inflation Dynamics," Working Papers 305, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:17:y:2013:i:5:p:573-617:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.