IDEAS home Printed from https://ideas.repec.org/a/bpj/jbcacn/v5y2014i3p377-409n3.html
   My bibliography  Save this article

Integrated assessment of climate change: state of the literature

Author

Listed:
  • Weyant John

    (Department of Management Science and Engineering, Room 260, Huang Engineering Center, Stanford University, Stanford, CA 94305-4026, USA)

Abstract

This paper reviews applications of benefit-cost analysis (BCA) in climate policy assessment at the US national and global scales. Two different but related major application types are addressed. First there are global-scale analyses that focus on calculating optimal global carbon emissions trajectories and carbon prices that maximize global welfare. The second application is the use of the same tools to compute the social cost of carbon (SCC) for use in US regulatory processes. The SCC is defined as the climate damages attributable to an increase of one metric ton of carbon dioxide emissions above a baseline emissions trajectory that assumes no new climate policies. The paper describes the three main quantitative models that have been used in the optimal carbon policy and SCC calculations and then summarizes the range of results that have been produced using them. The results span an extremely broad range (up to an order of magnitude) across modeling platforms as well as across the plausible ranges of input assumptions to a single model. This broad range of results sets the stage for a discussion of the five key challenges that face BCA practitioners participating in the national and global climate change policy analysis arenas: (1) including the possibility of catastrophic outcomes; (2) factoring in equity and income distribution considerations; (3) addressing intertemporal discounting and intergenerational equity; (4) projecting baseline demographics, technological change, and policies inside and outside the energy sector; and (5) characterizing the full set of uncertainties to be dealt with and designing a decision-making process that updates and adapts new scientific and economic information into that process in a timely and productive manner. The paper closes by describing how the BCA models have been useful in climate policy discussions to date despite the uncertainties that pervade the results that have been produced.

Suggested Citation

  • Weyant John, 2014. "Integrated assessment of climate change: state of the literature," Journal of Benefit-Cost Analysis, De Gruyter, vol. 5(3), pages 377-409, December.
  • Handle: RePEc:bpj:jbcacn:v:5:y:2014:i:3:p:377-409:n:3
    DOI: 10.1515/jbca-2014-9002
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jbca-2014-9002
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jbca-2014-9002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toman Michael, 2014. "The need for multiple types of information to inform climate change assessment," Journal of Benefit-Cost Analysis, De Gruyter, vol. 5(3), pages 469-485, December.
    2. Ackerman, Frank & Stanton, Elizabeth A., 2012. "Climate risks and carbon prices: Revising the social cost of carbon," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-25.
    3. Anthoff, David & Tol, Richard S.J., 2010. "On international equity weights and national decision making on climate change," Journal of Environmental Economics and Management, Elsevier, vol. 60(1), pages 14-20, July.
    4. Nordhaus, William D & Yang, Zili, 1996. "A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies," American Economic Review, American Economic Association, vol. 86(4), pages 741-765, September.
    5. Nordhaus, William, 2013. "Integrated Economic and Climate Modeling," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1069-1131, Elsevier.
    6. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    7. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    8. Martin L. Weitzman, 2013. "Tail-Hedge Discounting and the Social Cost of Carbon," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 873-882, September.
    9. Marten, Alex L. & Newbold, Stephen C., 2012. "Estimating the social cost of non-CO2 GHG emissions: Methane and nitrous oxide," Energy Policy, Elsevier, vol. 51(C), pages 957-972.
    10. Peter A. Morris, 1986. "Observations on Expert Aggregation," Management Science, INFORMS, vol. 32(3), pages 321-328, March.
    11. Neumann, James E. & Strzepek, Kenneth, 2014. "State of the literature on the economic impacts of climate change in the United States," Journal of Benefit-Cost Analysis, Cambridge University Press, vol. 5(3), pages 411-443, December.
    12. Tol, Richard S. J., 2008. "The Social Cost of Carbon: Trends, Outliers and Catastrophes," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 2, pages 1-22.
    13. Robert S. Pindyck, 2013. "Climate Change Policy: What Do the Models Tell Us?," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 860-872, September.
    14. David Anthoff & Richard Tol, 2013. "The uncertainty about the social cost of carbon: A decomposition analysis using fund," Climatic Change, Springer, vol. 117(3), pages 515-530, April.
    15. Lind, Robert C, 1995. "Intergenerational equity, discounting, and the role of cost-benefit analysis in evaluating global climate policy," Energy Policy, Elsevier, vol. 23(4-5), pages 379-389.
    16. William Nordhaus, 2014. "Estimates of the Social Cost of Carbon: Concepts and Results from the DICE-2013R Model and Alternative Approaches," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(1), pages 000.
    17. Nordhaus, William D., 1993. "Rolling the 'DICE': an optimal transition path for controlling greenhouse gases," Resource and Energy Economics, Elsevier, vol. 15(1), pages 27-50, March.
    18. Robert L. Winkler & Robert T. Clemen, 1992. "Sensitivity of Weights in Combining Forecasts," Operations Research, INFORMS, vol. 40(3), pages 609-614, June.
    19. Peter A. Morris, 1977. "Combining Expert Judgments: A Bayesian Approach," Management Science, INFORMS, vol. 23(7), pages 679-693, March.
    20. William R. Cline, 1992. "Economics of Global Warming, The," Peterson Institute Press: All Books, Peterson Institute for International Economics, number 39, October.
    21. Peter A. Morris, 1983. "An Axiomatic Approach to Expert Resolution," Management Science, INFORMS, vol. 29(1), pages 24-32, January.
    22. Martin L. Weitzman, 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," The Review of Economics and Statistics, MIT Press, vol. 91(1), pages 1-19, February.
    23. Robert T. Clemen & Robert L. Winkler, 1993. "Aggregating Point Estimates: A Flexible Modeling Approach," Management Science, INFORMS, vol. 39(4), pages 501-515, April.
    24. Robert T. Clemen, 1986. "Calibration and the Aggregation of Probabilities," Management Science, INFORMS, vol. 32(3), pages 312-314, March.
    25. Michael Greenstone & Elizabeth Kopits & Ann Wolverton, 2011. "Estimating the Social Cost of Carbon for Use in U.S. Federal Rulemakings: A Summary and Interpretation," NBER Working Papers 16913, National Bureau of Economic Research, Inc.
    26. David Cass, 1965. "Optimum Growth in an Aggregative Model of Capital Accumulation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 32(3), pages 233-240.
    27. Laurie Johnson & Chris Hope, 2012. "The social cost of carbon in U.S. regulatory impact analyses: an introduction and critique," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 2(3), pages 205-221, September.
    28. William D. Nordhaus, 2007. "A Review of the Stern Review on the Economics of Climate Change," Journal of Economic Literature, American Economic Association, vol. 45(3), pages 686-702, September.
    29. Peter A. Morris, 1974. "Decision Analysis Expert Use," Management Science, INFORMS, vol. 20(9), pages 1233-1241, May.
    30. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    31. Nicholas Stern, 2008. "The Economics of Climate Change," American Economic Review, American Economic Association, vol. 98(2), pages 1-37, May.
    32. David Anthoff & Richard Tol, 2013. "Erratum to: The uncertainty about the social cost of carbon: A decomposition analysis using fund," Climatic Change, Springer, vol. 121(2), pages 413-413, November.
    33. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    34. Hope, Chris W., 2011. "The social cost of CO2 from the PAGE09 model," Economics Discussion Papers 2011-39, Kiel Institute for the World Economy (IfW Kiel).
    35. Arrow, K. & Cropper, M. & Gollier, C. & Groom, B. & Heal, G. & Newell, R. & Nordhaus, W. & Pindyck, R. & Pizer, W. & Portney, P. & Sterner, T. & Tol, R. S. J. & Weitzman, Martin L., 2013. "Determining Benefits and Costs for Future Generations," Scholarly Articles 12841963, Harvard University Department of Economics.
    36. Clemon, Robert T & Winkler, Robert L, 1986. "Combining Economic Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 39-46, January.
    37. Robert T. Clemen & Robert L. Winkler, 1985. "Limits for the Precision and Value of Information from Dependent Sources," Operations Research, INFORMS, vol. 33(2), pages 427-442, April.
    38. Lempert, Robert J., 2014. "Embedding (some) benefit-cost concepts into decision support processes with deep uncertainty," Journal of Benefit-Cost Analysis, Cambridge University Press, vol. 5(3), pages 487-514, December.
    39. Li, Jia & Mullan, Michael & Helgeson, Jennifer, 2014. "Improving the practice of economic analysis of climate change adaptation," Journal of Benefit-Cost Analysis, Cambridge University Press, vol. 5(3), pages 445-467, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luis Moisés Peña-Lévano & Farzad Taheripour & Wallace E. Tyner, 2019. "Climate Change Interactions with Agriculture, Forestry Sequestration, and Food Security," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(2), pages 653-675, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    2. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    3. Richard S. J. Tol, 2021. "Estimates of the social cost of carbon have increased over time," Papers 2105.03656, arXiv.org, revised Aug 2022.
    4. John Weyant, 2017. "Some Contributions of Integrated Assessment Models of Global Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(1), pages 115-137.
    5. Havranek, Tomas & Irsova, Zuzana & Janda, Karel & Zilberman, David, 2015. "Selective reporting and the social cost of carbon," Energy Economics, Elsevier, vol. 51(C), pages 394-406.
    6. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    7. William Nordhaus, 2014. "Estimates of the Social Cost of Carbon: Concepts and Results from the DICE-2013R Model and Alternative Approaches," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 1(1), pages 000.
    8. Nordhaus, William, 2013. "Integrated Economic and Climate Modeling," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1069-1131, Elsevier.
    9. Zhang, Hong & Jin, Gui & Zhang, Zhengyu, 2021. "Coupling system of carbon emission and social economy: A review," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    10. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    11. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    12. Wei, Yi-Ming & Mi, Zhi-Fu & Huang, Zhimin, 2015. "Climate policy modeling: An online SCI-E and SSCI based literature review," Omega, Elsevier, vol. 57(PA), pages 70-84.
    13. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2018. "Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model," Ecological Economics, Elsevier, vol. 150(C), pages 315-339.
    14. repec:hal:spmain:info:hdl:2441/4hs7liq1f49gh9chdf7r17gam6 is not listed on IDEAS
    15. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    16. Simon Dietz & Nicholas Stern, 2014. "Endogenous growth, convexity of damages and climate risk: how Nordhaus� framework supports deep cuts in carbon emissions," GRI Working Papers 159, Grantham Research Institute on Climate Change and the Environment.
    17. Sussman Fran & Weaver Christopher P. & Grambsch Anne, 2014. "Challenges in applying the paradigm of welfare economics to climate change," Journal of Benefit-Cost Analysis, De Gruyter, vol. 5(3), pages 347-376, December.
    18. W. Botzen & Jeroen Bergh, 2014. "Specifications of Social Welfare in Economic Studies of Climate Policy: Overview of Criteria and Related Policy Insights," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(1), pages 1-33, May.
    19. Tol, Richard S.J., 2013. "Targets for global climate policy: An overview," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 911-928.
    20. Davidson, Marc D., 2014. "Zero discounting can compensate future generations for climate damage," Ecological Economics, Elsevier, vol. 105(C), pages 40-47.
    21. Ralph Hippe, 2015. "Why did the knowledge transition occur in the West and not in the East? ICT and the role of governments in Europe, East Asia and the Muslim world," GRI Working Papers 180, Grantham Research Institute on Climate Change and the Environment.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jbcacn:v:5:y:2014:i:3:p:377-409:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.