IDEAS home Printed from https://ideas.repec.org/a/bla/wireae/v3y2014i2p122-155.html
   My bibliography  Save this article

Urban transport and CO 2 emissions: some evidence from Chinese cities

Author

Listed:
  • Georges Darido
  • Mariana Torres-Montoya
  • Shomik Mehndiratta

Abstract

No abstract is available for this item.

Suggested Citation

  • Georges Darido & Mariana Torres-Montoya & Shomik Mehndiratta, 2014. "Urban transport and CO 2 emissions: some evidence from Chinese cities," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(2), pages 122-155, March.
  • Handle: RePEc:bla:wireae:v:3:y:2014:i:2:p:122-155
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/wene.71
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Kebin & Huo, Hong & Zhang, Qiang & He, Dongquan & An, Feng & Wang, Michael & Walsh, Michael P., 2005. "Oil consumption and CO2 emissions in China's road transport: current status, future trends, and policy implications," Energy Policy, Elsevier, vol. 33(12), pages 1499-1507, August.
    2. Bento, Antonio M. & Cropper, Maureen L. & Mobarak, Ahmed Mushfiq & Vinha, Katja, 2003. "The impact of urban spatial structure on travel demand in the United States," Policy Research Working Paper Series 3007, The World Bank.
    3. Ingram, Gregory K. & Zhi Liu, 1998. "Vehicles, roads, and road use - alternative empirical specifications," Policy Research Working Paper Series 2036, The World Bank.
    4. Ingram, Gregory K. & Zhi Liu, 1999. "Determinants of motorization and road provision," Policy Research Working Paper Series 2042, The World Bank.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Prateek Bansal & Rubal Dua, 2022. "Fuel consumption elasticities, rebound effect and feebate effectiveness in the Indian and Chinese new car markets," Papers 2201.08995, arXiv.org.
    2. Chen, Yuan & Lin Lawell, C.-Y. Cynthia & Wang, Yunshi, 2020. "The Chinese automobile industry and government policy," Research in Transportation Economics, Elsevier, vol. 84(C).
    3. Akimoto, Keigo & Sano, Fuminori & Oda, Junichiro, 2022. "Impacts of ride and car-sharing associated with fully autonomous cars on global energy consumptions and carbon dioxide emissions," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    4. Bansal, Prateek & Dua, Rubal, 2022. "Fuel consumption elasticities, rebound effect and feebate effectiveness in the Indian and Chinese new car markets," Energy Economics, Elsevier, vol. 113(C).
    5. Shahbaz, Muhammad & Abosedra, Salah & Kumar, Mantu & Abbas, Qaisar, 2020. "Environmental Consequence of Transportation Sector for USA: The Validation of Transportation Kuznets Curve," MPRA Paper 102167, University Library of Munich, Germany, revised 30 Jul 2020.
    6. Marcin Połom & Paweł Wiśniewski, 2021. "Assessment of the Emission of Pollutants from Public Transport Based on the Example of Diesel Buses and Trolleybuses in Gdynia and Sopot," IJERPH, MDPI, vol. 18(16), pages 1-17, August.
    7. Mian Yang & Zheng Hu & Jiahai Yuan, 2016. "The recent history and successes of China's energy efficiency policy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(6), pages 715-730, November.
    8. Zhao, Pengxiang & Kwan, Mei-Po & Qin, Kun, 2017. "Uncovering the spatiotemporal patterns of CO2 emissions by taxis based on Individuals' daily travel," Journal of Transport Geography, Elsevier, vol. 62(C), pages 122-135.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sierra, Jaime Cevallos, 2016. "Estimating road transport fuel consumption in Ecuador," Energy Policy, Elsevier, vol. 92(C), pages 359-368.
    2. Fang, Hao Audrey, 2008. "A discrete-continuous model of households' vehicle choice and usage, with an application to the effects of residential density," Transportation Research Part B: Methodological, Elsevier, vol. 42(9), pages 736-758, November.
    3. Jianlei Lang & Shuiyuan Cheng & Ying Zhou & Beibei Zhao & Haiyan Wang & Shujing Zhang, 2013. "Energy and Environmental Implications of Hybrid and Electric Vehicles in China," Energies, MDPI, vol. 6(5), pages 1-23, May.
    4. Huo, Hong & Zhang, Qiang & He, Kebin & Yao, Zhiliang & Wang, Michael, 2012. "Vehicle-use intensity in China: Current status and future trend," Energy Policy, Elsevier, vol. 43(C), pages 6-16.
    5. Salon, Deborah, 2015. "The Effect of Land Use Policies and Infrastructure Investments on How Much We Drive: A Practitioner’s Guide to the Literature," Institute of Transportation Studies, Working Paper Series qt54d4567m, Institute of Transportation Studies, UC Davis.
    6. Huo, Hong & Yao, Zhiliang & He, Kebin & Yu, Xin, 2011. "Fuel consumption rates of passenger cars in China: Labels versus real-world," Energy Policy, Elsevier, vol. 39(11), pages 7130-7135.
    7. Ziru Feng & Tian Cai & Kangli Xiang & Chenxi Xiang & Lei Hou, 2019. "Evaluating the Impact of Fossil Fuel Vehicle Exit on the Oil Demand in China," Energies, MDPI, vol. 12(14), pages 1-18, July.
    8. Zahabi, Seyed Amir H. & Miranda-Moreno, Luis & Patterson, Zachary & Barla, Philippe, 2015. "Spatio-temporal analysis of car distance, greenhouse gases and the effect of built environment: A latent class regression analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 1-13.
    9. Majid Zahiri & Jielun Liu & Xiqun (Michael) Chen, 2019. "Taxi Downsizing: A New Approach to Efficiency and Sustainability in the Taxi Industry," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    10. Xiaowei Song & Yongpei Hao, 2019. "Vehicular Emission Inventory and Reduction Scenario Analysis in the Yangtze River Delta, China," IJERPH, MDPI, vol. 16(23), pages 1-21, November.
    11. Wang, Haikun & Fu, Lixin & Bi, Jun, 2011. "CO2 and pollutant emissions from passenger cars in China," Energy Policy, Elsevier, vol. 39(5), pages 3005-3011, May.
    12. Lin, C.-Y. Cynthia & Zeng, Jieyin (Jean), 2013. "The elasticity of demand for gasoline in China," Energy Policy, Elsevier, vol. 59(C), pages 189-197.
    13. Naveen Eluru & Chandra Bhat & Ram Pendyala & Karthik Konduri, 2010. "A joint flexible econometric model system of household residential location and vehicle fleet composition/usage choices," Transportation, Springer, vol. 37(4), pages 603-626, July.
    14. Yu, Wei & Pagani, Roberto & Huang, Lei, 2012. "CO2 emission inventories for Chinese cities in highly urbanized areas compared with European cities," Energy Policy, Elsevier, vol. 47(C), pages 298-308.
    15. Ali Enes Dingil & Federico Rupi & Domokos Esztergár-Kiss, 2021. "An Integrative Review of Socio-Technical Factors Influencing Travel Decision-Making and Urban Transport Performance," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    16. Gillingham, Kenneth & Munk-Nielsen, Anders, 2019. "A tale of two tails: Commuting and the fuel price response in driving," Journal of Urban Economics, Elsevier, vol. 109(C), pages 27-40.
    17. Walls, W.D., 2010. "Petroleum refining industry in China," Energy Policy, Elsevier, vol. 38(5), pages 2110-2115, May.
    18. Kim, Jinwon & Brownstone, David, 2013. "The impact of residential density on vehicle usage and fuel consumption: Evidence from national samples," Energy Economics, Elsevier, vol. 40(C), pages 196-206.
    19. Yang, Jun & Liu, Ying & Qin, Ping & Liu, Antung A., 2014. "A review of Beijing׳s vehicle registration lottery: Short-term effects on vehicle growth and fuel consumption," Energy Policy, Elsevier, vol. 75(C), pages 157-166.
    20. Wang, Kai-Hua & Su, Chi-Wei & Lobonţ, Oana-Ramona & Umar, Muhammad, 2021. "Whether crude oil dependence and CO2 emissions influence military expenditure in net oil importing countries?," Energy Policy, Elsevier, vol. 153(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:wireae:v:3:y:2014:i:2:p:122-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2041-8396 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.