IDEAS home Printed from https://ideas.repec.org/a/bla/reviec/v30y2022i1p1-33.html
   My bibliography  Save this article

Nonlinear spillover and portfolio allocation characteristics of energy equity sectors: Evidence from the United States and Canada

Author

Listed:
  • Jose Arreola Hernandez
  • Sang Hoon Kang
  • Seong‐Min Yoon

Abstract

We investigate the nonlinear spillover and portfolio allocation characteristics of the US and Canadian energy equity portfolios. Our empirical study based on directional spillover index and non‐convex portfolio optimization show that the spillover effects in the aggregate are smaller for the US portfolio across time. However, when only the largest spillover transmitters and receivers are considered, the total spillover effects are lower for the Canadian portfolio relative to the US portfolio. These portfolio optimization results indicate lower portfolio allocation risk for the Canadian energy equities during the global financial crisis of 2008 and for the full sample period.

Suggested Citation

  • Jose Arreola Hernandez & Sang Hoon Kang & Seong‐Min Yoon, 2022. "Nonlinear spillover and portfolio allocation characteristics of energy equity sectors: Evidence from the United States and Canada," Review of International Economics, Wiley Blackwell, vol. 30(1), pages 1-33, February.
  • Handle: RePEc:bla:reviec:v:30:y:2022:i:1:p:1-33
    DOI: 10.1111/roie.12553
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/roie.12553
    Download Restriction: no

    File URL: https://libkey.io/10.1111/roie.12553?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cohen, Gail & Joutz, Frederick & Loungani, Prakash, 2011. "Measuring energy security: Trends in the diversification of oil and natural gas supplies," Energy Policy, Elsevier, vol. 39(9), pages 4860-4869, September.
    2. Klemkosky, Robert C., 1973. "The Bias in Composite Performance Measures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 8(3), pages 505-514, June.
    3. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    4. Demirer, Rıza & Jategaonkar, Shrikant P. & Khalifa, Ahmed A.A., 2015. "Oil price risk exposure and the cross-section of stock returns: The case of net exporting countries," Energy Economics, Elsevier, vol. 49(C), pages 132-140.
    5. Lutz Kilian, 2016. "The Impact of the Shale Oil Revolution on U.S. Oil and Gasoline Prices," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(2), pages 185-205.
    6. Chau, Frankie & Deesomsak, Rataporn, 2014. "Does linkage fuel the fire? The transmission of financial stress across the markets," International Review of Financial Analysis, Elsevier, vol. 36(C), pages 57-70.
    7. Bertsimas, Dimitris & Lauprete, Geoffrey J. & Samarov, Alexander, 2004. "Shortfall as a risk measure: properties, optimization and applications," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1353-1381, April.
    8. Arjan Berkelaar & Phornchanok Cumperayot & Roy Kouwenberg, 2002. "The Effect of VaR Based Risk Management on Asset Prices and the Volatility Smile," European Financial Management, European Financial Management Association, vol. 8(2), pages 139-164, June.
    9. Yau, Sheena & Kwon, Roy H. & Scott Rogers, J. & Wu, Desheng, 2011. "Financial and operational decisions in the electricity sector: Contract portfolio optimization with the conditional value-at-risk criterion," International Journal of Production Economics, Elsevier, vol. 134(1), pages 67-77, November.
    10. Gupta, Kartick, 2016. "Oil price shocks, competition, and oil & gas stock returns — Global evidence," Energy Economics, Elsevier, vol. 57(C), pages 140-153.
    11. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    12. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    13. Galvani, Valentina & Plourde, André, 2010. "Portfolio diversification in energy markets," Energy Economics, Elsevier, vol. 32(2), pages 257-268, March.
    14. Laporta, Alessandro G. & Merlo, Luca & Petrella, Lea, 2018. "Selection of Value at Risk Models for Energy Commodities," Energy Economics, Elsevier, vol. 74(C), pages 628-643.
    15. Xue, Weili & Ma, Lijun & Shen, Houcai, 2015. "Optimal inventory and hedging decisions with CVaR consideration," International Journal of Production Economics, Elsevier, vol. 162(C), pages 70-82.
    16. Huang, Dashan & Zhu, Shu-Shang & Fabozzi, Frank J. & Fukushima, Masao, 2008. "Portfolio selection with uncertain exit time: A robust CVaR approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(2), pages 594-623, February.
    17. Fishburn, Peter C, 1977. "Mean-Risk Analysis with Risk Associated with Below-Target Returns," American Economic Review, American Economic Association, vol. 67(2), pages 116-126, March.
    18. Diebold, Francis X. & Yilmaz, Kamil, 2015. "Financial and Macroeconomic Connectedness: A Network Approach to Measurement and Monitoring," OUP Catalogue, Oxford University Press, number 9780199338306, Decembrie.
    19. Chen, Liyuan & Zerilli, Paola & Baum, Christopher F., 2019. "Leverage effects and stochastic volatility in spot oil returns: A Bayesian approach with VaR and CVaR applications," Energy Economics, Elsevier, vol. 79(C), pages 111-129.
    20. Antonakakis, Nikolaos & Kizys, Renatas, 2015. "Dynamic spillovers between commodity and currency markets," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 303-319.
    21. Vladimir Rankovic & Mikica Drenovak & Branko Uroševic & Ranko Jelic, 2016. "Mean Univariate-GARCH VaR Portfolio Optimization: Actual Portfolio Approach," CESifo Working Paper Series 5731, CESifo.
    22. Mulvey, John M. & Erkan, Hafize G., 2006. "Applying CVaR for decentralized risk management of financial companies," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 627-644, February.
    23. Kellner, Ralf & Rösch, Daniel, 2016. "Quantifying market risk with Value-at-Risk or Expected Shortfall? – Consequences for capital requirements and model risk," Journal of Economic Dynamics and Control, Elsevier, vol. 68(C), pages 45-63.
    24. Yoon, Seong-Min & Al Mamun, Md & Uddin, Gazi Salah & Kang, Sang Hoon, 2019. "Network connectedness and net spillover between financial and commodity markets," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 801-818.
    25. Bawa, Vijay S., 1975. "Optimal rules for ordering uncertain prospects," Journal of Financial Economics, Elsevier, vol. 2(1), pages 95-121, March.
    26. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    27. Wu, Jiekang & Wu, Zhijiang & Wu, Fan & Tang, Huiling & Mao, Xiaoming, 2018. "CVaR risk-based optimization framework for renewable energy management in distribution systems with DGs and EVs," Energy, Elsevier, vol. 143(C), pages 323-336.
    28. Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Narayan, Paresh Kumar, 2015. "Oil price and stock returns of consumers and producers of crude oil," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 34(C), pages 245-262.
    29. Allen, D.E. & Powell, R.J. & Singh, A.K., 2016. "Take it to the limit: Innovative CVaR applications to extreme credit risk measurement," European Journal of Operational Research, Elsevier, vol. 249(2), pages 465-475.
    30. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    31. Al-Yahyaee, Khamis Hamed & Mensi, Walid & Sensoy, Ahmet & Kang, Sang Hoon, 2019. "Energy, precious metals, and GCC stock markets: Is there any risk spillover?," Pacific-Basin Finance Journal, Elsevier, vol. 56(C), pages 45-70.
    32. Kang, Sang Hoon & McIver, Ron & Yoon, Seong-Min, 2017. "Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets," Energy Economics, Elsevier, vol. 62(C), pages 19-32.
    33. Ang, James S. & Chua, Jess H., 1979. "Composite Measures for the Evaluation of Investment Performance," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 14(2), pages 361-384, June.
    34. Mensi, Walid & Hernandez, Jose Arroeola & Yoon, Seong-Min & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Spillovers and connectedness between major precious metals and major currency markets: The role of frequency factor," International Review of Financial Analysis, Elsevier, vol. 74(C).
    35. repec:ipg:wpaper:2014-561 is not listed on IDEAS
    36. Hammoudeh, Shawkat & Nguyen, Duc Khuong & Reboredo, Juan Carlos & Wen, Xiaoqian, 2014. "Dependence of stock and commodity futures markets in China: Implications for portfolio investment," Emerging Markets Review, Elsevier, vol. 21(C), pages 183-200.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose Arreola Hernandez & Sang Hoon Kang & Ron P. McIver & Seong-Min Yoon, 2021. "Network Interdependence and Optimization of Bank Portfolios from Developed and Emerging Asia Pacific Countries," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(4), pages 613-647, December.
    2. Evrim Mandacı, Pınar & Cagli, Efe Çaglar & Taşkın, Dilvin, 2020. "Dynamic connectedness and portfolio strategies: Energy and metal markets," Resources Policy, Elsevier, vol. 68(C).
    3. Mensi, Walid & Aslan, Aylin & Vo, Xuan Vinh & Kang, Sang Hoon, 2023. "Time-frequency spillovers and connectedness between precious metals, oil futures and financial markets: Hedge and safe haven implications," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 219-232.
    4. McIver, Ron P. & Kang, Sang Hoon, 2020. "Financial crises and the dynamics of the spillovers between the U.S. and BRICS stock markets," Research in International Business and Finance, Elsevier, vol. 54(C).
    5. Lilian Muchimba, 2022. "Connectedness of money market instruments: A time-varying vector autoregression approach," Working Papers in Economics & Finance 2022-07, University of Portsmouth, Portsmouth Business School, Economics and Finance Subject Group.
    6. Billah, Mabruk & Karim, Sitara & Naeem, Muhammad Abubakr & Vigne, Samuel A., 2022. "Return and volatility spillovers between energy and BRIC markets: Evidence from quantile connectedness," Research in International Business and Finance, Elsevier, vol. 62(C).
    7. Yoon, Seong-Min & Al Mamun, Md & Uddin, Gazi Salah & Kang, Sang Hoon, 2019. "Network connectedness and net spillover between financial and commodity markets," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 801-818.
    8. Mensi, Walid & Al-Yahyaee, Khamis Hamed & Hoon Kang, Sang, 2017. "Time-varying volatility spillovers between stock and precious metal markets with portfolio implications," Resources Policy, Elsevier, vol. 53(C), pages 88-102.
    9. Kang, Sang Hoon & McIver, Ron & Yoon, Seong-Min, 2017. "Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets," Energy Economics, Elsevier, vol. 62(C), pages 19-32.
    10. Zhang, Hua & Chen, Jinyu & Shao, Liuguo, 2021. "Dynamic spillovers between energy and stock markets and their implications in the context of COVID-19," International Review of Financial Analysis, Elsevier, vol. 77(C).
    11. Antonakakis, Nikolaos & Cunado, Juncal & Filis, George & Gabauer, David & Perez de Gracia, Fernando, 2018. "Oil volatility, oil and gas firms and portfolio diversification," Energy Economics, Elsevier, vol. 70(C), pages 499-515.
    12. Kang, Sanghoon & Hernandez, Jose Arreola & Sadorsky, Perry & McIver, Ronald, 2021. "Frequency spillovers, connectedness, and the hedging effectiveness of oil and gold for US sector ETFs," Energy Economics, Elsevier, vol. 99(C).
    13. Ana Alzate-Ortega & Natalia Garzón & Jesús Molina-Muñoz, 2024. "Volatility Spillovers in Emerging Markets: Oil Shocks, Energy, Stocks, and Gold," Energies, MDPI, vol. 17(2), pages 1-19, January.
    14. Rafael Baptista Palazzi & Ata Assaf & Marcelo Cabus Klotzle, 2024. "Dynamic connectedness between energy markets and the Brazilian cash market: An empirical analysis pre‐ and post‐COVID‐19," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(1), pages 27-56, January.
    15. Mensi, Walid & Al Rababa'a, Abdel Razzaq & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Asymmetric spillover and network connectedness between crude oil, gold, and Chinese sector stock markets," Energy Economics, Elsevier, vol. 98(C).
    16. Guhathakurta, Kousik & Dash, Saumya Ranjan & Maitra, Debasish, 2020. "Period specific volatility spillover based connectedness between oil and other commodity prices and their portfolio implications," Energy Economics, Elsevier, vol. 85(C).
    17. Bonaccolto, Giovanni & Caporin, Massimiliano & Maillet, Bertrand B., 2022. "Dynamic large financial networks via conditional expected shortfalls," European Journal of Operational Research, Elsevier, vol. 298(1), pages 322-336.
    18. Cui, Jinxin & Maghyereh, Aktham, 2023. "Higher-order moment risk connectedness and optimal investment strategies between international oil and commodity futures markets: Insights from the COVID-19 pandemic and Russia-Ukraine conflict," International Review of Financial Analysis, Elsevier, vol. 86(C).
    19. Gao, Yang & Li, Yangyang & Wang, Yaojun, 2021. "Risk spillover and network connectedness analysis of China’s green bond and financial markets: Evidence from financial events of 2015–2020," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    20. Mensi, Walid & Hernandez, Jose Arroeola & Yoon, Seong-Min & Vo, Xuan Vinh & Kang, Sang Hoon, 2021. "Spillovers and connectedness between major precious metals and major currency markets: The role of frequency factor," International Review of Financial Analysis, Elsevier, vol. 74(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:reviec:v:30:y:2022:i:1:p:1-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0965-7576 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.