IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v25y2021i4p913-931.html
   My bibliography  Save this article

Tracking the diffusion of industrial symbiosis scholarship using bibliometrics: Comparing across Web of Science, Scopus, and Google Scholar

Author

Listed:
  • Marian R. Chertow
  • Koichi S. Kanaoka
  • Jooyoung Park

Abstract

Previous bibliometric analyses of industrial symbiosis (IS) research have focused on a limited body of literature owing to the scope of keyword searches or limitations of library databases. This study seeks to apply bibliometrics to explore broader, epistemological questions, particularly about the structure and geospatial development of IS as a sub‐field of industrial ecology. We also evaluate the benefits of using Google Scholar, in addition to the conventional databases Web of Science (WoS) and Scopus, for better understanding academic domains. By using WoS and Scopus, 805 articles on IS that met our criteria were identified, published in 212 journals from 1995 through 2018. On average, the cumulative number of relevant articles grew at an exponential rate of 18% per year—more than double the estimated growth of global scientific output. We observed the largest increases in articles that: (1) model the material and energy flows in IS clusters; (2) propose strategies and ideas for implementing symbiosis; and (3) evaluate the performance of IS networks. By the end of 2018, 54 countries were featured in IS articles retrieved from WoS and Scopus, with China as the single most studied country. The analysis of Google Scholar suggested that it can capture more IS articles than the conventional databases owing to its unique characteristic of searching the entire text of documents rather than solely their metadata as with WoS and Scopus. Google Scholar revealed IS discourse from additional countries and disciplines previously omitted, enabling a more acute view of its patterns of diffusion.

Suggested Citation

  • Marian R. Chertow & Koichi S. Kanaoka & Jooyoung Park, 2021. "Tracking the diffusion of industrial symbiosis scholarship using bibliometrics: Comparing across Web of Science, Scopus, and Google Scholar," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 913-931, August.
  • Handle: RePEc:bla:inecol:v:25:y:2021:i:4:p:913-931
    DOI: 10.1111/jiec.13099
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13099
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Goh, Chun Sheng & Lee, Keat Teong, 2010. "Palm-based biofuel refinery (PBR) to substitute petroleum refinery: An energy and emergy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2986-2995, December.
    2. Saeed Parto, 2000. "Industrial ecology and regionalization of economic governance: an opportunity to ‘localize’ sustainability?," Business Strategy and the Environment, Wiley Blackwell, vol. 9(5), pages 339-350, September.
    3. Leo Baas, 2008. "Industrial symbiosis in the Rotterdam Harbour and Industry Complex: reflections on the interconnection of the techno‐sphere with the social system," Business Strategy and the Environment, Wiley Blackwell, vol. 17(5), pages 330-340, July.
    4. Susanne Mikki, 2010. "Comparing Google Scholar and ISI Web of Science for Earth Sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 321-331, February.
    5. Pierre Desrochers & Samuli Leppälä, 2010. "Industrial Symbiosis: Old Wine in Recycled Bottles? Some Perspective from the History of Economic and Geographical Thought," International Regional Science Review, , vol. 33(3), pages 338-361, July.
    6. Simboli, Alberto & Taddeo, Raffaella & Morgante, Anna, 2015. "The potential of Industrial Ecology in agri-food clusters (AFCs): A case study based on valorisation of auxiliary materials," Ecological Economics, Elsevier, vol. 111(C), pages 65-75.
    7. Qinghua ZHU & Ernest A. LOWE & Yuan‐an WEI & Donald BARNES, 2007. "Industrial Symbiosis in China: A Case Study of the Guitang Group," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 31-42, January.
    8. R. Husgafvel & H. Nordlund & J. Heino & M. Mäkelä & G. Watkins & O. Dahl & I.-L. Paavola, 2016. "Use of Symbiosis Products from Integrated Pulp and Paper and Carbon Steel Mills: Legal Status and Environmental Burdens," Journal of Industrial Ecology, Yale University, vol. 20(5), pages 1187-1198, October.
    9. Lin Shi & Marian Chertow, 2017. "Organizational Boundary Change in Industrial Symbiosis: Revisiting the Guitang Group in China," Sustainability, MDPI, vol. 9(7), pages 1-19, June.
    10. Frank Boons & Marian Chertow & Jooyoung Park & Wouter Spekkink & Han Shi, 2017. "Industrial Symbiosis Dynamics and the Problem of Equivalence: Proposal for a Comparative Framework," Journal of Industrial Ecology, Yale University, vol. 21(4), pages 938-952, August.
    11. Philippe Mongeon & Adèle Paul-Hus, 2016. "The journal coverage of Web of Science and Scopus: a comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 213-228, January.
    12. Isidro F. Aguillo, 2012. "Is Google Scholar useful for bibliometrics? A webometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 343-351, May.
    13. Lutz Bornmann & Rüdiger Mutz, 2015. "Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(11), pages 2215-2222, November.
    14. Michael Gusenbauer, 2019. "Google Scholar to overshadow them all? Comparing the sizes of 12 academic search engines and bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 177-214, January.
    15. Otto Andersen, 1997. "Industrial ecology and some implications for rural SMEs," Business Strategy and the Environment, Wiley Blackwell, vol. 6(3), pages 146-152, July.
    16. Moed, Henk F. & Bar-Ilan, Judit & Halevi, Gali, 2016. "A new methodology for comparing Google Scholar and Scopus," Journal of Informetrics, Elsevier, vol. 10(2), pages 533-551.
    17. Zhiquan Yeo & Donato Masi & Jonathan Sze Choong Low & Yen Ting Ng & Puay Siew Tan & Stuart Barnes, 2019. "Tools for promoting industrial symbiosis: A systematic review," Journal of Industrial Ecology, Yale University, vol. 23(5), pages 1087-1108, October.
    18. Kayvan Kousha & Mike Thelwall, 2008. "Sources of Google Scholar citations outside the Science Citation Index: A comparison between four science disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 74(2), pages 273-294, February.
    19. Jooyoung Park & Juanita Duque-Hernández & Nohora Díaz-Posada, 2018. "Facilitating Business Collaborations for Industrial Symbiosis: The Pilot Experience of the Sustainable Industrial Network Program in Colombia," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    20. John Ehrenfeld & Nicholas Gertler, 1997. "Industrial Ecology in Practice: The Evolution of Interdependence at Kalundborg," Journal of Industrial Ecology, Yale University, vol. 1(1), pages 67-79, January.
    21. Isaksson, Johan & Jansson, Mikael & Åsblad, Anders & Berntsson, Thore, 2016. "Transportation fuel production from gasified biomass integrated with a pulp and paper mill – Part A: Heat integration and system performance," Energy, Elsevier, vol. 103(C), pages 557-571.
    22. Larissa A. R. U. Freitas & Alessandra Magrini, 2017. "Waste Management in Industrial Construction: Investigating Contributions from Industrial Ecology," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    23. Piadeh, Farzad & Alavi Moghaddam, Mohamad Reza & Mardan, Saeed, 2014. "Present situation of wastewater treatment in the Iranian industrial estates: Recycle and reuse as a solution for achieving goals of eco-industrial parks," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 172-178.
    24. R. Andrews & J.M. Pearce, 2011. "Environmental and Economic Assessment of a Greenhouse Waste Heat Exchange," Post-Print hal-02120486, HAL.
    25. Frank Boons & Wouter Spekkink & Wenting Jiao, 2014. "A Process Perspective on Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 341-355, May.
    26. Teresa Doménech & Michael Davies, 2011. "The role of Embeddedness in Industrial Symbiosis Networks: Phases in the Evolution of Industrial Symbiosis Networks," Business Strategy and the Environment, Wiley Blackwell, vol. 20(5), pages 281-296, July.
    27. Wu, Junnian & Pu, Guangying & Guo, Yan & Lv, Jingwen & Shang, Jiangwei, 2018. "Retrospective and prospective assessment of exergy, life cycle carbon emissions, and water footprint for coking network evolution in China," Applied Energy, Elsevier, vol. 218(C), pages 479-493.
    28. Suocheng Dong & Zhe Wang & Yu Li & Fujia Li & Zehong Li & Feng Chen & Hao Cheng, 2017. "Assessment of Comprehensive Effects and Optimization of a Circular Economy System of Coal Power and Cement in Kongtong District, Pingliang City, Gansu Province, China," Sustainability, MDPI, vol. 9(5), pages 1-16, May.
    29. Isaksson, Johan & Jansson, Mikael & Åsblad, Anders & Berntsson, Thore, 2016. "Transportation fuel production from gasified biomass integrated with a pulp and paper mill - Part B: Analysis of economic performance and greenhouse gas emissions," Energy, Elsevier, vol. 103(C), pages 522-532.
    30. Frank Schiller & Alexandra Penn & Angela Druckman & Lauren Basson & Kate Royston, 2014. "Exploring Space, Exploiting Opportunities," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 792-798, December.
    31. Guo, Ying & Hu, Shan-ying & Li, You-run & Chen, Ding-jiang & Zhu, Bing & Smith, Karl M., 2010. "Optimization and analysis of a bioethanol agro-industrial system from sweet sorghum," Renewable Energy, Elsevier, vol. 35(12), pages 2902-2909.
    32. Ole Ellegaard & Johan A. Wallin, 2015. "The bibliometric analysis of scholarly production: How great is the impact?," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1809-1831, December.
    33. Ramsey A. Wright & Raymond P. Côté & Jack Duffy & John Brazner, 2009. "Diversity and Connectance in an Industrial Context," Journal of Industrial Ecology, Yale University, vol. 13(4), pages 551-564, August.
    34. Sara E. Keckler & David T. Allen, 1998. "Material Reuse Modeling," Journal of Industrial Ecology, Yale University, vol. 2(4), pages 79-92, October.
    35. Veerle Verguts & Joost Dessein & Art Dewulf & Ludwig Lauwers & Renate Werkman & Catrien J.A.M. Termeer, 2016. "Industrial symbiosis as sustainable development strategy: adding a change perspective," International Journal of Sustainable Development, Inderscience Enterprises Ltd, vol. 19(1), pages 15-35.
    36. Donald I. Lyons, 2007. "A Spatial Analysis of Loop Closing Among Recycling, Remanufacturing, and Waste Treatment Firms in Texas," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 43-54, January.
    37. Cao, Kai & Feng, Xiao & Wan, Hui, 2009. "Applying agent-based modeling to the evolution of eco-industrial systems," Ecological Economics, Elsevier, vol. 68(11), pages 2868-2876, September.
    38. Marian Chertow & Yuko Miyata, 2011. "Assessing collective firm behavior: comparing industrial symbiosis with possible alternatives for individual companies in Oahu, HI," Business Strategy and the Environment, Wiley Blackwell, vol. 20(4), pages 266-280, May.
    39. Alfred Posch, 2010. "Industrial Recycling Networks as Starting Points for Broader Sustainability‐Oriented Cooperation?," Journal of Industrial Ecology, Yale University, vol. 14(2), pages 242-257, March.
    40. Ioannis Siskos & Luk N. Van Wassenhove, 2017. "Synergy Management Services Companies: A New Business Model for Industrial Park Operators," Journal of Industrial Ecology, Yale University, vol. 21(4), pages 802-814, August.
    41. Mutanga, Shingirirai Savious & de Vries, Marne & Mbohwa, Charles & Kumar, Dillip Das & Rogner, Holger, 2016. "An integrated approach for modeling the electricity value of a sugarcane production system," Applied Energy, Elsevier, vol. 177(C), pages 823-838.
    42. Peder Olesen Larsen & Markus Ins, 2010. "The rate of growth in scientific publication and the decline in coverage provided by Science Citation Index," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(3), pages 575-603, September.
    43. Raymond L. Paquin & Suzanne G. Tilleman & Jennifer Howard-Grenville, 2014. "Is There Cash in That Trash?," Journal of Industrial Ecology, Yale University, vol. 18(2), pages 268-279, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enora Barrau & Mathias Glaus, 2022. "Structural and Environmental Performance of Evolving Industrial Symbiosis: A Multidimensional Analysis," Sustainability, MDPI, vol. 15(1), pages 1-17, December.
    2. Zhe Liu & Weslynne S. Ashton & Michelle Adams & Qing Wang & Raymond P. Cote & Tony R. Walker & Lu Sun & Peter Lowitt, 2023. "Diversity in financing and implementation pathways for industrial symbiosis across the globe," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 960-978, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hua Cui & Changhao Liu & Raymond Côté & Weifeng Liu, 2018. "Understanding the Evolution of Industrial Symbiosis with a System Dynamics Model: A Case Study of Hai Hua Industrial Symbiosis, China," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    2. Juan Henriques & Paulo Ferrão & Rui Castro & João Azevedo, 2021. "Industrial Symbiosis: A Sectoral Analysis on Enablers and Barriers," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    3. Angela Neves & Radu Godina & Susana G. Azevedo & João C. O. Matias, 2019. "Current Status, Emerging Challenges, and Future Prospects of Industrial Symbiosis in Portugal," Sustainability, MDPI, vol. 11(19), pages 1-23, October.
    4. Luca Fraccascia & Ilaria Giannoccaro & Vito Albino, 2017. "Efficacy of Landfill Tax and Subsidy Policies for the Emergence of Industrial Symbiosis Networks: An Agent-Based Simulation Study," Sustainability, MDPI, vol. 9(4), pages 1-18, March.
    5. Fraccascia, Luca, 2020. "Quantifying the direct network effect for online platforms supporting industrial symbiosis: an agent-based simulation study," Ecological Economics, Elsevier, vol. 170(C).
    6. Angela Neves & Radu Godina & Susana G. Azevedo & Carina Pimentel & João C.O. Matias, 2019. "The Potential of Industrial Symbiosis: Case Analysis and Main Drivers and Barriers to Its Implementation," Sustainability, MDPI, vol. 11(24), pages 1-68, December.
    7. Juan Diego Henriques & João Azevedo & Rui Dias & Marco Estrela & Cristina Ascenço & Doroteya Vladimirova & Karen Miller, 2022. "Implementing Industrial Symbiosis Incentives: an Applied Assessment Framework for Risk Mitigation," Circular Economy and Sustainability,, Springer.
    8. John Rincón-Moreno & Marta Ormazabal & Maria J. Álvarez & Carmen Jaca, 2020. "Shortcomings of Transforming a Local Circular Economy System through Industrial Symbiosis: A Case Study in Spanish SMEs," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    9. Efrain Boom-Cárcamo & Rita Peñabaena-Niebles, 2022. "Analysis of the Development of Industrial Symbiosis in Emerging and Frontier Market Countries: Barriers and Drivers," Sustainability, MDPI, vol. 14(7), pages 1-32, April.
    10. Michael Gusenbauer, 2022. "Search where you will find most: Comparing the disciplinary coverage of 56 bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2683-2745, May.
    11. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    12. Raffaella Taddeo & Alberto Simboli & Giuseppe Ioppolo & Anna Morgante, 2017. "Industrial Symbiosis, Networking and Innovation: The Potential Role of Innovation Poles," Sustainability, MDPI, vol. 9(2), pages 1-17, January.
    13. Fraccascia, Luca & Giannoccaro, Ilaria & Albino, Vito, 2021. "Ecosystem indicators for measuring industrial symbiosis," Ecological Economics, Elsevier, vol. 183(C).
    14. Beckamp, Marius, 2021. "Industriesymbiosen als Ansatz regionaler Kreislaufwirtschaft: Begriffsklärung & strukturpolitische Potentiale," Forschung Aktuell 08/2021, Institut Arbeit und Technik (IAT), Westfälische Hochschule, University of Applied Sciences.
    15. Martín-Martín, Alberto & Orduna-Malea, Enrique & Thelwall, Mike & Delgado López-Cózar, Emilio, 2018. "Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories," Journal of Informetrics, Elsevier, vol. 12(4), pages 1160-1177.
    16. Anna Rohde-Lütje & Volker Wohlgemuth, 2020. "Recurring Patterns and Blueprints of Industrial Symbioses as Structural Units for an IT Tool," Sustainability, MDPI, vol. 12(19), pages 1-21, October.
    17. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    18. Fabiana Liar Agudo & Barbara Stolte Bezerra & José Alcides Gobbo & Luis Alberto Bertolucci Paes, 2022. "Unfolding research themes for industrial symbiosis and underlying theories," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1682-1702, December.
    19. György Csomós & Zsófia Viktória Vida & Balázs Lengyel, 2020. "Exploring the changing geographical pattern of international scientific collaborations through the prism of cities," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-20, November.
    20. Joost C. F. Winter & Amir A. Zadpoor & Dimitra Dodou, 2014. "The expansion of Google Scholar versus Web of Science: a longitudinal study," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1547-1565, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:25:y:2021:i:4:p:913-931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.