IDEAS home Printed from https://ideas.repec.org/h/spr/circec/v2y2022i2d10.1007_s43615-021-00069-2.html
   My bibliography  Save this book chapter

Implementing Industrial Symbiosis Incentives: an Applied Assessment Framework for Risk Mitigation

Author

Listed:
  • Juan Diego Henriques

    (Instituto de Soldadura e Qualidade)

  • João Azevedo

    (Instituto de Soldadura e Qualidade)

  • Rui Dias

    (Instituto de Soldadura e Qualidade)

  • Marco Estrela

    (Instituto de Soldadura e Qualidade)

  • Cristina Ascenço

    (Instituto de Soldadura e Qualidade)

  • Doroteya Vladimirova

    (University of Cambridge)

  • Karen Miller

    (University of Cambridge)

Abstract

Industrial symbiosis (IS) is a business model that proposes symbiotic exchanges, allowing the flow of resources, wastes, and utilities between companies. In recent years, IS initiatives have been exponentially growing around the world. This can be attributed to the increasing awareness on the possibility of obtaining economic, environmental, and social benefits through the implementation of this model. Despite the exponential growth of IS initiatives, the companies are still facing problems in the achievement of reliable and permanent synergies. Over the years the literature has identified several factors in the IS emerging process. Incentives are among these factors, being defined as unlocking tools or mechanisms related to diverse dimensions such as economic, political, social, intermediaries, process, and technology. Authors believe that the large-scale implementation of IS incentives has not been properly addressed. In order to promote facilitated IS implementation and achieve a replicator effect, incentives should be fully addressed. In many case studies, it has been observed that the incentives for IS can be threatened by risks, compromising the implementation, and hindering the emerging process. This study developed a dedicated framework that is composed of incentive identification from best practices of IS and expert consultation; a risk assessment model based on risk factors identification and clustering; and finally, the mitigation actions based on the assessment outputs. The main result of this study is one set of mitigations actions that correlate the implementation levels (clusters) and the potential stakeholders involved.

Suggested Citation

  • Juan Diego Henriques & João Azevedo & Rui Dias & Marco Estrela & Cristina Ascenço & Doroteya Vladimirova & Karen Miller, 2022. "Implementing Industrial Symbiosis Incentives: an Applied Assessment Framework for Risk Mitigation," Circular Economy and Sustainability,, Springer.
  • Handle: RePEc:spr:circec:v:2:y:2022:i:2:d:10.1007_s43615-021-00069-2
    DOI: 10.1007/s43615-021-00069-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43615-021-00069-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43615-021-00069-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jooyoung Park & Juanita Duque-Hernández & Nohora Díaz-Posada, 2018. "Facilitating Business Collaborations for Industrial Symbiosis: The Pilot Experience of the Sustainable Industrial Network Program in Colombia," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    2. D. Rachel Lombardi & Peter Laybourn, 2012. "Redefining Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 28-37, February.
    3. Qinghua ZHU & Ernest A. LOWE & Yuan‐an WEI & Donald BARNES, 2007. "Industrial Symbiosis in China: A Case Study of the Guitang Group," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 31-42, January.
    4. Heungsoon Kim, 2007. "Building an eco-industrial park as a public project in South Korea. The stakeholders' understanding of and involvement in the project," Sustainable Development, John Wiley & Sons, Ltd., vol. 15(6), pages 357-369.
    5. Luca Fraccascia & Ilaria Giannoccaro & Vito Albino, 2017. "Efficacy of Landfill Tax and Subsidy Policies for the Emergence of Industrial Symbiosis Networks: An Agent-Based Simulation Study," Sustainability, MDPI, vol. 9(4), pages 1-18, March.
    6. Zhang, Yan & Zheng, Hongmei & Fath, Brian D., 2015. "Ecological network analysis of an industrial symbiosis system: A case study of the Shandong Lubei eco-industrial park," Ecological Modelling, Elsevier, vol. 306(C), pages 174-184.
    7. Yang, Shanlin & Feng, Nanping, 2008. "A case study of industrial symbiosis: Nanning Sugar Co., Ltd. in China," Resources, Conservation & Recycling, Elsevier, vol. 52(5), pages 813-820.
    8. Amtul Samie Maqbool & Francisco Mendez Alva & Greet Van Eetvelde, 2018. "An Assessment of European Information Technology Tools to Support Industrial Symbiosis," Sustainability, MDPI, vol. 11(1), pages 1-15, December.
    9. Frank Boons & Marian Chertow & Jooyoung Park & Wouter Spekkink & Han Shi, 2017. "Industrial Symbiosis Dynamics and the Problem of Equivalence: Proposal for a Comparative Framework," Journal of Industrial Ecology, Yale University, vol. 21(4), pages 938-952, August.
    10. Marian Chertow & Weslynne Ashton & Juan Espinosa, 2008. "Industrial Symbiosis in Puerto Rico: Environmentally Related Agglomeration Economies," Regional Studies, Taylor & Francis Journals, vol. 42(10), pages 1299-1312.
    11. João Azevedo & Juan Henriques & Marco Estrela & Rui Dias & Doroteya Vladimirova & Karen Miller & Muriel Iten, 2021. "Guidelines for Industrial Symbiosis—a Systematic Approach for Content Definition and Practical Recommendations for Implementation," Circular Economy and Sustainability,, Springer.
    12. Weslynne S. Ashton & Shauhrat S. Chopra & And Rahul Kashyap, 2017. "Life and Death of Industrial Ecosystems," Sustainability, MDPI, vol. 9(4), pages 1-15, April.
    13. Marian R. Chertow, 2007. "“Uncovering” Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 11-30, January.
    14. Angela Neves & Radu Godina & Susana G. Azevedo & João C. O. Matias, 2019. "Current Status, Emerging Challenges, and Future Prospects of Industrial Symbiosis in Portugal," Sustainability, MDPI, vol. 11(19), pages 1-23, October.
    15. Domenech, Teresa & Bahn-Walkowiak, Bettina, 2019. "Transition Towards a Resource Efficient Circular Economy in Europe: Policy Lessons From the EU and the Member States," Ecological Economics, Elsevier, vol. 155(C), pages 7-19.
    16. Leo Baas & Frank Boons, 2007. "The introduction and dissemination of the industrial symbiosis projects in the Rotterdam Harbour and Industry Complex," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 7(5/6), pages 551-577.
    17. Marian Chertow & Yuko Miyata, 2011. "Assessing collective firm behavior: comparing industrial symbiosis with possible alternatives for individual companies in Oahu, HI," Business Strategy and the Environment, Wiley Blackwell, vol. 20(4), pages 266-280, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Henriques & Paulo Ferrão & Rui Castro & João Azevedo, 2021. "Industrial Symbiosis: A Sectoral Analysis on Enablers and Barriers," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    2. John Rincón-Moreno & Marta Ormazabal & Maria J. Álvarez & Carmen Jaca, 2020. "Shortcomings of Transforming a Local Circular Economy System through Industrial Symbiosis: A Case Study in Spanish SMEs," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    3. Fraccascia, Luca, 2020. "Quantifying the direct network effect for online platforms supporting industrial symbiosis: an agent-based simulation study," Ecological Economics, Elsevier, vol. 170(C).
    4. Angela Neves & Radu Godina & Susana G. Azevedo & Carina Pimentel & João C.O. Matias, 2019. "The Potential of Industrial Symbiosis: Case Analysis and Main Drivers and Barriers to Its Implementation," Sustainability, MDPI, vol. 11(24), pages 1-68, December.
    5. João Azevedo & Juan Henriques & Marco Estrela & Rui Dias & Doroteya Vladimirova & Karen Miller & Muriel Iten, 2021. "Guidelines for Industrial Symbiosis—a Systematic Approach for Content Definition and Practical Recommendations for Implementation," Circular Economy and Sustainability,, Springer.
    6. Angela Neves & Radu Godina & Susana G. Azevedo & João C. O. Matias, 2019. "Current Status, Emerging Challenges, and Future Prospects of Industrial Symbiosis in Portugal," Sustainability, MDPI, vol. 11(19), pages 1-23, October.
    7. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    8. Marian R. Chertow & Koichi S. Kanaoka & Jooyoung Park, 2021. "Tracking the diffusion of industrial symbiosis scholarship using bibliometrics: Comparing across Web of Science, Scopus, and Google Scholar," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 913-931, August.
    9. Hua Cui & Changhao Liu & Raymond Côté & Weifeng Liu, 2018. "Understanding the Evolution of Industrial Symbiosis with a System Dynamics Model: A Case Study of Hai Hua Industrial Symbiosis, China," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    10. Fraccascia, Luca & Giannoccaro, Ilaria & Albino, Vito, 2021. "Ecosystem indicators for measuring industrial symbiosis," Ecological Economics, Elsevier, vol. 183(C).
    11. Fraccascia, Luca, 2019. "The impact of technical and economic disruptions in industrial symbiosis relationships: An enterprise input-output approach," International Journal of Production Economics, Elsevier, vol. 213(C), pages 161-174.
    12. Fraccascia, Luca & Yazan, Devrim Murat & Albino, Vito & Zijm, Henk, 2020. "The role of redundancy in industrial symbiotic business development: A theoretical framework explored by agent-based simulation," International Journal of Production Economics, Elsevier, vol. 221(C).
    13. Ilaria Giannoccaro & Valeria Zaza & Luca Fraccascia, 2023. "Designing regional industrial symbiosis networks: The case of Apulia region," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1475-1514, June.
    14. Miguel A. Artacho-Ramírez & Bélgica Pacheco-Blanco & Víctor A. Cloquell-Ballester & Mónica Vicent & Irina Celades, 2020. "Quick Wins Workshop and Companies Profiling to Analyze Industrial Symbiosis Potential. Valenciaport’s Cluster as Case Study," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    15. Emilia Faria & Armando Caldeira-Pires & Cristiane Barreto, 2021. "Social, Economic, and Institutional Configurations of the Industrial Symbiosis Process: A Comparative Analysis of the Literature and a Proposed Theoretical and Analytical Framework," Sustainability, MDPI, vol. 13(13), pages 1-25, June.
    16. Daniel Jato-Espino & Carmen Ruiz-Puente, 2020. "Fostering Circular Economy Through the Analysis of Existing Open Access Industrial Symbiosis Databases," Sustainability, MDPI, vol. 12(3), pages 1-24, January.
    17. Devrim Murat Yazan & Vahid Yazdanpanah & Luca Fraccascia, 2020. "Learning strategic cooperative behavior in industrial symbiosis: A game‐theoretic approach integrated with agent‐based simulation," Business Strategy and the Environment, Wiley Blackwell, vol. 29(5), pages 2078-2091, July.
    18. Wadström, Christoffer & Johansson, Maria & Wallén, Magnus, 2021. "A framework for studying outcomes in industrial symbiosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    19. Haiyan Shan & Junliang Yang & Guo Wei, 2019. "Industrial Symbiosis Systems: Promoting Carbon Emission Reduction Activities," IJERPH, MDPI, vol. 16(7), pages 1-23, March.
    20. Chris Davis & Graham Aid, 2022. "Machine learning‐assisted industrial symbiosis: Testing the ability of word vectors to estimate similarity for material substitutions," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 27-43, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:circec:v:2:y:2022:i:2:d:10.1007_s43615-021-00069-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.