IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7495-d412247.html
   My bibliography  Save this article

Quick Wins Workshop and Companies Profiling to Analyze Industrial Symbiosis Potential. Valenciaport’s Cluster as Case Study

Author

Listed:
  • Miguel A. Artacho-Ramírez

    (Department of Engineering Projects, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain)

  • Bélgica Pacheco-Blanco

    (Department of Engineering Projects, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain)

  • Víctor A. Cloquell-Ballester

    (Department of Engineering Projects, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain)

  • Mónica Vicent

    (Instituto de Tecnología Cerámica (ITC) Asociación de Investigación de las Industrias Cerámicas (AICE), Universitat Jaume I (UJI) Av. Vicent Sos Baynat s/n, 12006 Castellón, Spain)

  • Irina Celades

    (Instituto de Tecnología Cerámica (ITC) Asociación de Investigación de las Industrias Cerámicas (AICE), Universitat Jaume I (UJI) Av. Vicent Sos Baynat s/n, 12006 Castellón, Spain)

Abstract

Industrial symbiosis (IS) improves resource efficiency and creates sustainable opportunities by encouraging synergies between industries. However, managers still have difficulties in promoting IS, given the lack of appropriate managerial tools to efficiently obtain an overview of IS potential. In this paper, a procedure merging the Quick Wins Workshop format with clustering techniques is proposed, in order to both identify IS opportunities and support IS creation in the industrial cluster of Valenciaport. A total of 18 stakeholders took part in the study. As a result, 79 different resources classified into eight categories—materials (16), goods (14), space (11), expertise (11), energy (9), services (8), hydrocarbons (7), and water (3)—were derived and a total of 78 possible matchings were found. The creation of IS was supported by the clustering methods, which allow for the definition of common symbiotic features among stakeholders, classifying them into groups with similar IS potential. Three IS profiles were identified (high, medium, and low IS potential) and two strategic projects were devised, accordingly. It can be concluded that the proposed procedure provides useful managerial tools to identify resource flows, uncover patterns of exchange, identify possible matchings, and devise projects in communities interested in fostering IS from scratch.

Suggested Citation

  • Miguel A. Artacho-Ramírez & Bélgica Pacheco-Blanco & Víctor A. Cloquell-Ballester & Mónica Vicent & Irina Celades, 2020. "Quick Wins Workshop and Companies Profiling to Analyze Industrial Symbiosis Potential. Valenciaport’s Cluster as Case Study," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7495-:d:412247
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7495/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7495/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D. Rachel Lombardi & Peter Laybourn, 2012. "Redefining Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 28-37, February.
    2. Raymond L. Paquin & Jennifer Howard‐Grenville, 2012. "The Evolution of Facilitated Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 16(1), pages 83-93, February.
    3. Luca Fraccascia & Ilaria Giannoccaro & Vito Albino, 2017. "Efficacy of Landfill Tax and Subsidy Policies for the Emergence of Industrial Symbiosis Networks: An Agent-Based Simulation Study," Sustainability, MDPI, vol. 9(4), pages 1-18, March.
    4. Zhang, Qiang & Geerlings, Harry & El Makhloufi, Abdel & Chen, Shun, 2018. "Who governs and what is governed in port governance: A review study," Transport Policy, Elsevier, vol. 64(C), pages 51-60.
    5. Antonia Gravagnuolo & Mariarosaria Angrisano & Luigi Fusco Girard, 2019. "Circular Economy Strategies in Eight Historic Port Cities: Criteria and Indicators Towards a Circular City Assessment Framework," Sustainability, MDPI, vol. 11(13), pages 1-24, June.
    6. Deishin Lee, 2012. "Turning Waste into By-Product," Manufacturing & Service Operations Management, INFORMS, vol. 14(1), pages 115-127, January.
    7. Marian R. Chertow, 2007. "“Uncovering” Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 11-30, January.
    8. Zhiquan Yeo & Donato Masi & Jonathan Sze Choong Low & Yen Ting Ng & Puay Siew Tan & Stuart Barnes, 2019. "Tools for promoting industrial symbiosis: A systematic review," Journal of Industrial Ecology, Yale University, vol. 23(5), pages 1087-1108, October.
    9. Assunta Di Vaio & Luisa Varriale, 2018. "Management Innovation for Environmental Sustainability in Seaports: Managerial Accounting Instruments and Training for Competitive Green Ports beyond the Regulations," Sustainability, MDPI, vol. 10(3), pages 1-35, March.
    10. Joanna Williams, 2019. "The Circular Regeneration of a Seaport," Sustainability, MDPI, vol. 11(12), pages 1-27, June.
    11. Susan E. Boehme & Marta A. Panero & Gabriela R. Muñoz & Charles W. Powers & Sandra N. Valle, 2009. "Collaborative Problem Solving Using an Industrial Ecology Approach," Journal of Industrial Ecology, Yale University, vol. 13(5), pages 811-829, October.
    12. Hung‐Suck Park & Jae‐Yeon Won, 2007. "Ulsan Eco‐industrial Park: Challenges and Opportunities," Journal of Industrial Ecology, Yale University, vol. 11(3), pages 11-13, July.
    13. Korhonen, Jouni & Snakin, Juha-Pekka, 2005. "Analysing the evolution of industrial ecosystems: concepts and application," Ecological Economics, Elsevier, vol. 52(2), pages 169-186, January.
    14. de Langen, Peter W., 2006. "Chapter 20 Stakeholders, Conflicting Interests and Governance in Port Clusters," Research in Transportation Economics, Elsevier, vol. 17(1), pages 457-477, January.
    15. Leo Baas, 2000. "Developing an Industrial Ecosystem in Rotterdam: Learning by … What?," Journal of Industrial Ecology, Yale University, vol. 4(2), pages 4-6, April.
    16. John Ehrenfeld & Nicholas Gertler, 1997. "Industrial Ecology in Practice: The Evolution of Interdependence at Kalundborg," Journal of Industrial Ecology, Yale University, vol. 1(1), pages 67-79, January.
    17. Tudor, Terry & Adam, Emma & Bates, Margaret, 2007. "Drivers and limitations for the successful development and functioning of EIPs (eco-industrial parks): A literature review," Ecological Economics, Elsevier, vol. 61(2-3), pages 199-207, March.
    18. Pauline Deutz & Giuseppe Ioppolo, 2015. "From Theory to Practice: Enhancing the Potential Policy Impact of Industrial Ecology," Sustainability, MDPI, vol. 7(2), pages 1-15, February.
    19. Víctor Cloquell-Ballester & Vanesa G. Lo-Iacono-Ferreira & Miguel Ángel Artacho-Ramírez & Salvador F. Capuz-Rizo, 2020. "RUE Index as a Tool to Improve the Energy Intensity of Container Terminals—Case Study at Port of Valencia," Energies, MDPI, vol. 13(10), pages 1-19, May.
    20. Michele Acciaro & Thierry Vanelslander & Christa Sys & Claudio Ferrari & Athena Roumboutsos & Genevieve Giuliano & Jasmine Siu Lee Lam & Seraphim Kapros, 2014. "Environmental sustainability in seaports: a framework for successful innovation," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(5), pages 480-500, September.
    21. Acciaro, Michele & Ghiara, Hilda & Cusano, Maria Inés, 2014. "Energy management in seaports: A new role for port authorities," Energy Policy, Elsevier, vol. 71(C), pages 4-12.
    22. Guido Capelleveen & Chintan Amrit & Devrim Murat Yazan, 2018. "A Literature Survey of Information Systems Facilitating the Identification of Industrial Symbiosis," Progress in IS, in: Benoît Otjacques & Patrik Hitzelberger & Stefan Naumann & Volker Wohlgemuth (ed.), From Science to Society, pages 155-169, Springer.
    23. Evans David S. & Schmalensee Richard, 2010. "Failure to Launch: Critical Mass in Platform Businesses," Review of Network Economics, De Gruyter, vol. 9(4), pages 1-28, December.
    24. Gabriel B. Grant & Thomas P. Seager & Guillaume Massard & Loring Nies, 2010. "Information and Communication Technology for Industrial Symbiosis," Journal of Industrial Ecology, Yale University, vol. 14(5), pages 740-753, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abderahman Rejeb & Karim Rejeb & Suhaiza Zailani & Yasanur Kayikci & John G. Keogh, 2023. "Examining Knowledge Diffusion in the Circular Economy Domain: a Main Path Analysis," Circular Economy and Sustainability,, Springer.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    2. Hélène Cervo & Stéphane Ogé & Amtul Samie Maqbool & Francisco Mendez Alva & Lindsay Lessard & Alexandre Bredimas & Jean-Henry Ferrasse & Greet Van Eetvelde, 2019. "A Case Study of Industrial Symbiosis in the Humber Region Using the EPOS Methodology," Sustainability, MDPI, vol. 11(24), pages 1-32, December.
    3. Tian Yang & Changhao Liu & Raymond P. Côté & Jinwen Ye & Weifeng Liu, 2022. "Evaluating the Barriers to Industrial Symbiosis Using a Group AHP-TOPSIS Model," Sustainability, MDPI, vol. 14(11), pages 1-30, June.
    4. Fraccascia, Luca & Yazan, Devrim Murat & Albino, Vito & Zijm, Henk, 2020. "The role of redundancy in industrial symbiotic business development: A theoretical framework explored by agent-based simulation," International Journal of Production Economics, Elsevier, vol. 221(C).
    5. Rachelle LeBlanc & Carole Tranchant & Yves Gagnon & Raymond Côté, 2016. "Potential for Eco-Industrial Park Development in Moncton, New Brunswick (Canada): A Comparative Analysis," Sustainability, MDPI, vol. 8(5), pages 1-18, May.
    6. Hua Cui & Changhao Liu & Raymond Côté & Weifeng Liu, 2018. "Understanding the Evolution of Industrial Symbiosis with a System Dynamics Model: A Case Study of Hai Hua Industrial Symbiosis, China," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    7. Anna Rohde-Lütje & Volker Wohlgemuth, 2020. "Recurring Patterns and Blueprints of Industrial Symbioses as Structural Units for an IT Tool," Sustainability, MDPI, vol. 12(19), pages 1-21, October.
    8. Fraccascia, Luca, 2020. "Quantifying the direct network effect for online platforms supporting industrial symbiosis: an agent-based simulation study," Ecological Economics, Elsevier, vol. 170(C).
    9. Emilia Faria & Armando Caldeira-Pires & Cristiane Barreto, 2021. "Social, Economic, and Institutional Configurations of the Industrial Symbiosis Process: A Comparative Analysis of the Literature and a Proposed Theoretical and Analytical Framework," Sustainability, MDPI, vol. 13(13), pages 1-25, June.
    10. Daniel Jato-Espino & Carmen Ruiz-Puente, 2020. "Fostering Circular Economy Through the Analysis of Existing Open Access Industrial Symbiosis Databases," Sustainability, MDPI, vol. 12(3), pages 1-24, January.
    11. Yuxi Dai & Steven Day & Donato Masi & Ismail Gölgeci, 2022. "A synthesised framework of eco‐industrial park transformation and stakeholder interaction," Business Strategy and the Environment, Wiley Blackwell, vol. 31(7), pages 3122-3151, November.
    12. Fraccascia, Luca, 2019. "The impact of technical and economic disruptions in industrial symbiosis relationships: An enterprise input-output approach," International Journal of Production Economics, Elsevier, vol. 213(C), pages 161-174.
    13. Di Vaio, Assunta & Varriale, Luisa & Alvino, Federico, 2018. "Key performance indicators for developing environmentally sustainable and energy efficient ports: Evidence from Italy," Energy Policy, Elsevier, vol. 122(C), pages 229-240.
    14. Anna Gatzioura & Miquel Sànchez-Marrè & Karina Gibert, 2019. "A Hybrid Recommender System to Improve Circular Economy in Industrial Symbiotic Networks," Energies, MDPI, vol. 12(18), pages 1-24, September.
    15. Angela Neves & Radu Godina & Susana G. Azevedo & João C. O. Matias, 2019. "Current Status, Emerging Challenges, and Future Prospects of Industrial Symbiosis in Portugal," Sustainability, MDPI, vol. 11(19), pages 1-23, October.
    16. Fortuna, Lorena M. & Diyamandoglu, Vasil, 2015. "NYC WasteMatch – An online facilitated materials exchange as a tool for pollution prevention," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 122-131.
    17. Mael Jambou & Andre Torre & Sabrina Dermine-Brullot & Sébastien Bourdin, 2022. "Inter-firm cooperation and local industrial ecology processes: evidence from three French case studies," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 68(2), pages 331-358, April.
    18. Anas S. Alamoush & Dimitrios Dalaklis & Fabio Ballini & Aykut I. Ölcer, 2023. "Consolidating Port Decarbonisation Implementation: Concept, Pathways, Barriers, Solutions, and Opportunities," Sustainability, MDPI, vol. 15(19), pages 1-28, September.
    19. Emilia Faria & Cristiane Barreto & Armando Caldeira-Pires & Jorge Alfredo Cerqueira Streit & Patricia Guarnieri, 2023. "Brazilian Circular Economy Pilot Project: Integrating Local Stakeholders’ Perception and Social Context in Industrial Symbiosis Analyses," Sustainability, MDPI, vol. 15(4), pages 1-28, February.
    20. Luca Fraccascia & Ilaria Giannoccaro & Vito Albino, 2017. "Efficacy of Landfill Tax and Subsidy Policies for the Emergence of Industrial Symbiosis Networks: An Agent-Based Simulation Study," Sustainability, MDPI, vol. 9(4), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7495-:d:412247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.