IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i4p521-d94536.html
   My bibliography  Save this article

Efficacy of Landfill Tax and Subsidy Policies for the Emergence of Industrial Symbiosis Networks: An Agent-Based Simulation Study

Author

Listed:
  • Luca Fraccascia

    (Department of Mechanics, Mathematics, and Management, Politecnico di Bari, Viale Japigia 182, 70126 Bari, Italy)

  • Ilaria Giannoccaro

    (Department of Mechanics, Mathematics, and Management, Politecnico di Bari, Viale Japigia 182, 70126 Bari, Italy)

  • Vito Albino

    (Department of Mechanics, Mathematics, and Management, Politecnico di Bari, Viale Japigia 182, 70126 Bari, Italy)

Abstract

Despite the theoretical value of industrial symbiosis (IS), this approach appears to be underdeveloped in terms of practical applications. Different attempts to stimulate IS in practice are noticed, one of them consisting in the application of adequate policy measures. This paper explores the efficacy of two specific policies (landfill tax and economic subsidy for IS exchanges) in supporting the emergence of self-organized industrial symbiosis networks (ISNs). We frame the ISNs as complex adaptive systems and we design an agent-based model to simulate their emergence. We use a real case study and, by means of the simulation model, we assess how the two policy measures are able to enhance the formation of spontaneous IS relationships, thereby forcing the emergence of the ISN. Results show that both policy measures have a positive effect in all scenarios considered, but the extent is strictly dependent on the environmental conditions in which IS relationships occur. The economic implications for the government are finally discussed.

Suggested Citation

  • Luca Fraccascia & Ilaria Giannoccaro & Vito Albino, 2017. "Efficacy of Landfill Tax and Subsidy Policies for the Emergence of Industrial Symbiosis Networks: An Agent-Based Simulation Study," Sustainability, MDPI, vol. 9(4), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:4:p:521-:d:94536
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/4/521/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/4/521/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ida Ferrara & Paul Missios, 2005. "Recycling and Waste Diversion Effectiveness: Evidence from Canada," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 30(2), pages 221-238, February.
    2. Rand, William & Rust, Roland T., 2011. "Agent-based modeling in marketing: Guidelines for rigor," International Journal of Research in Marketing, Elsevier, vol. 28(3), pages 181-193.
    3. Fraccascia, Luca & Albino, Vito & Garavelli, Claudio A., 2017. "Technical efficiency measures of industrial symbiosis networks using enterprise input-output analysis," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 273-286.
    4. Qinghua ZHU & Ernest A. LOWE & Yuan‐an WEI & Donald BARNES, 2007. "Industrial Symbiosis in China: A Case Study of the Guitang Group," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 31-42, January.
    5. Christophe Deissenberg & Sander van Der Hoog & Herbert Dawid, 2008. "EURACE: A Massively Parallel Agent-Based Model of the European Economy," Working Papers halshs-00339756, HAL.
    6. Nicolli, Francesco & Mazzanti, Massimiliano, 2013. "Landfill diversion in a decentralized setting: A dynamic assessment of landfill taxes," Resources, Conservation & Recycling, Elsevier, vol. 81(C), pages 17-23.
    7. Capaldo, Antonio & Giannoccaro, Ilaria, 2015. "How does trust affect performance in the supply chain? The moderating role of interdependence," International Journal of Production Economics, Elsevier, vol. 166(C), pages 36-49.
    8. Yuan, Hongping & Wang, Jiayuan, 2014. "A system dynamics model for determining the waste disposal charging fee in construction," European Journal of Operational Research, Elsevier, vol. 237(3), pages 988-996.
    9. Nuria Calvo & Laura Varela-Candamio & Isabel Novo-Corti, 2014. "A Dynamic Model for Construction and Demolition (C&D) Waste Management in Spain: Driving Policies Based on Economic Incentives and Tax Penalties," Sustainability, MDPI, vol. 6(1), pages 1-20, January.
    10. Matthias Ruth & Brynhildur Davidsdottir (ed.), 2009. "The Dynamics of Regions and Networks in Industrial Ecosystems," Books, Edward Elgar Publishing, number 13019.
    11. Stefan Seuring, 2004. "Industrial ecology, life cycles, supply chains: differences and interrelations," Business Strategy and the Environment, Wiley Blackwell, vol. 13(5), pages 306-319, September.
    12. Giannoccaro, Ilaria, 2015. "Adaptive supply chains in industrial districts: A complexity science approach focused on learning," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 576-589.
    13. Hui Wang & Xuegong Xu & Gaoru Zhu, 2015. "Landscape Changes and a Salt Production Sustainable Approach in the State of Salt Pan Area Decreasing on the Coast of Tianjin, China," Sustainability, MDPI, vol. 7(8), pages 1-20, July.
    14. Albino, Vito & Carbonara, Nunzia & Giannoccaro, Ilaria, 2007. "Supply chain cooperation in industrial districts: A simulation analysis," European Journal of Operational Research, Elsevier, vol. 177(1), pages 261-280, February.
    15. John Ehrenfeld & Nicholas Gertler, 1997. "Industrial Ecology in Practice: The Evolution of Interdependence at Kalundborg," Journal of Industrial Ecology, Yale University, vol. 1(1), pages 67-79, January.
    16. Tudor, Terry & Adam, Emma & Bates, Margaret, 2007. "Drivers and limitations for the successful development and functioning of EIPs (eco-industrial parks): A literature review," Ecological Economics, Elsevier, vol. 61(2-3), pages 199-207, March.
    17. Pauline Deutz & Giuseppe Ioppolo, 2015. "From Theory to Practice: Enhancing the Potential Policy Impact of Industrial Ecology," Sustainability, MDPI, vol. 7(2), pages 1-15, February.
    18. David, Paul A., 1994. "Why are institutions the 'carriers of history'?: Path dependence and the evolution of conventions, organizations and institutions," Structural Change and Economic Dynamics, Elsevier, vol. 5(2), pages 205-220, December.
    19. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    20. Giannoccaro, Ilaria, 2011. "Assessing the influence of the organization in the supply chain management using NK simulation," International Journal of Production Economics, Elsevier, vol. 131(1), pages 263-272, May.
    21. Albino, Vito & Carbonara, Nunzia & Giannoccaro, Ilaria, 2006. "Innovation in industrial districts: An agent-based simulation model," International Journal of Production Economics, Elsevier, vol. 104(1), pages 30-45, November.
    22. Teresa Doménech & Michael Davies, 2011. "The role of Embeddedness in Industrial Symbiosis Networks: Phases in the Evolution of Industrial Symbiosis Networks," Business Strategy and the Environment, Wiley Blackwell, vol. 20(5), pages 281-296, July.
    23. Weslynne S. Ashton, 2011. "Managing Performance Expectations of Industrial Symbiosis," Business Strategy and the Environment, Wiley Blackwell, vol. 20(5), pages 297-309, July.
    24. Noel Brings Jacobsen, 2006. "Industrial Symbiosis in Kalundborg, Denmark: A Quantitative Assessment of Economic and Environmental Aspects," Journal of Industrial Ecology, Yale University, vol. 10(1‐2), pages 239-255, January.
    25. Fraccascia, Luca & Giannoccaro, Ilaria & Albino, Vito, 2017. "Rethinking Resilience in Industrial Symbiosis: Conceptualization and Measurements," Ecological Economics, Elsevier, vol. 137(C), pages 148-162.
    26. Knud Sinding, 2000. "Environmental management beyond the boundaries of the firm: definitions and constraints," Business Strategy and the Environment, Wiley Blackwell, vol. 9(2), pages 79-91, March.
    27. Donald I. Lyons, 2007. "A Spatial Analysis of Loop Closing Among Recycling, Remanufacturing, and Waste Treatment Firms in Texas," Journal of Industrial Ecology, Yale University, vol. 11(1), pages 43-54, January.
    28. Cao, Kai & Feng, Xiao & Wan, Hui, 2009. "Applying agent-based modeling to the evolution of eco-industrial systems," Ecological Economics, Elsevier, vol. 68(11), pages 2868-2876, September.
    29. David F. Batten, 2009. "Fostering Industrial Symbiosis With Agent‐Based Simulation and Participatory Modeling," Journal of Industrial Ecology, Yale University, vol. 13(2), pages 197-213, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian Yang & Changhao Liu & Raymond P. Côté & Jinwen Ye & Weifeng Liu, 2022. "Evaluating the Barriers to Industrial Symbiosis Using a Group AHP-TOPSIS Model," Sustainability, MDPI, vol. 14(11), pages 1-30, June.
    2. Wadström, Christoffer & Johansson, Maria & Wallén, Magnus, 2021. "A framework for studying outcomes in industrial symbiosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. Fraccascia, Luca, 2019. "The impact of technical and economic disruptions in industrial symbiosis relationships: An enterprise input-output approach," International Journal of Production Economics, Elsevier, vol. 213(C), pages 161-174.
    4. Juan Diego Henriques & João Azevedo & Rui Dias & Marco Estrela & Cristina Ascenço & Doroteya Vladimirova & Karen Miller, 2022. "Implementing Industrial Symbiosis Incentives: an Applied Assessment Framework for Risk Mitigation," Circular Economy and Sustainability,, Springer.
    5. Fraccascia, Luca & Yazan, Devrim Murat & Albino, Vito & Zijm, Henk, 2020. "The role of redundancy in industrial symbiotic business development: A theoretical framework explored by agent-based simulation," International Journal of Production Economics, Elsevier, vol. 221(C).
    6. J. Raimbault & J. Broere & M. Somveille & J. M. Serna & E. Strombom & C. Moore & B. Zhu & L. Sugar, 2020. "A spatial agent based model for simulating and optimizing networked eco-industrial systems," Papers 2003.14133, arXiv.org.
    7. Miguel A. Artacho-Ramírez & Bélgica Pacheco-Blanco & Víctor A. Cloquell-Ballester & Mónica Vicent & Irina Celades, 2020. "Quick Wins Workshop and Companies Profiling to Analyze Industrial Symbiosis Potential. Valenciaport’s Cluster as Case Study," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    8. Yazan, Devrim Murat & Fraccascia, Luca & Mes, Martijn & Zijm, Henk, 2018. "Cooperation in manure-based biogas production networks: An agent-based modeling approach," Applied Energy, Elsevier, vol. 212(C), pages 820-833.
    9. Linda Ponta & Silvano Cincotti, 2018. "Traders’ Networks of Interactions and Structural Properties of Financial Markets: An Agent-Based Approach," Complexity, Hindawi, vol. 2018, pages 1-9, January.
    10. Devrim Murat Yazan & Vahid Yazdanpanah & Luca Fraccascia, 2020. "Learning strategic cooperative behavior in industrial symbiosis: A game‐theoretic approach integrated with agent‐based simulation," Business Strategy and the Environment, Wiley Blackwell, vol. 29(5), pages 2078-2091, July.
    11. Juan Henriques & Paulo Ferrão & Rui Castro & João Azevedo, 2021. "Industrial Symbiosis: A Sectoral Analysis on Enablers and Barriers," Sustainability, MDPI, vol. 13(4), pages 1-22, February.
    12. Angela Neves & Radu Godina & Susana G. Azevedo & Carina Pimentel & João C.O. Matias, 2019. "The Potential of Industrial Symbiosis: Case Analysis and Main Drivers and Barriers to Its Implementation," Sustainability, MDPI, vol. 11(24), pages 1-68, December.
    13. Angela Neves & Radu Godina & Susana G. Azevedo & João C. O. Matias, 2019. "Current Status, Emerging Challenges, and Future Prospects of Industrial Symbiosis in Portugal," Sustainability, MDPI, vol. 11(19), pages 1-23, October.
    14. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    15. Hua Cui & Changhao Liu & Raymond Côté & Weifeng Liu, 2018. "Understanding the Evolution of Industrial Symbiosis with a System Dynamics Model: A Case Study of Hai Hua Industrial Symbiosis, China," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    16. Shiva Noori & Gijsbert Korevaar & Rob Stikkelman & Andrea Ramírez, 2023. "Exploring the emergence of waste recovery and exchange in industrial clusters," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 937-950, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fraccascia, Luca & Yazan, Devrim Murat & Albino, Vito & Zijm, Henk, 2020. "The role of redundancy in industrial symbiotic business development: A theoretical framework explored by agent-based simulation," International Journal of Production Economics, Elsevier, vol. 221(C).
    2. Fraccascia, Luca, 2019. "The impact of technical and economic disruptions in industrial symbiosis relationships: An enterprise input-output approach," International Journal of Production Economics, Elsevier, vol. 213(C), pages 161-174.
    3. Fraccascia, Luca & Giannoccaro, Ilaria & Albino, Vito, 2017. "Rethinking Resilience in Industrial Symbiosis: Conceptualization and Measurements," Ecological Economics, Elsevier, vol. 137(C), pages 148-162.
    4. Fraccascia, Luca, 2020. "Quantifying the direct network effect for online platforms supporting industrial symbiosis: an agent-based simulation study," Ecological Economics, Elsevier, vol. 170(C).
    5. Hua Cui & Changhao Liu & Raymond Côté & Weifeng Liu, 2018. "Understanding the Evolution of Industrial Symbiosis with a System Dynamics Model: A Case Study of Hai Hua Industrial Symbiosis, China," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    6. Marian R. Chertow & Koichi S. Kanaoka & Jooyoung Park, 2021. "Tracking the diffusion of industrial symbiosis scholarship using bibliometrics: Comparing across Web of Science, Scopus, and Google Scholar," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 913-931, August.
    7. Alfred Posch & Abhishek Agarwal & Peter Strachan, 2011. "Editorial: Managing Industrial Symbiosis (IS) Networks," Business Strategy and the Environment, Wiley Blackwell, vol. 20(7), pages 421-427, November.
    8. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    9. Fraccascia, Luca & Giannoccaro, Ilaria & Albino, Vito, 2021. "Ecosystem indicators for measuring industrial symbiosis," Ecological Economics, Elsevier, vol. 183(C).
    10. Massari, Giovanni Francesco & Giannoccaro, Ilaria, 2021. "Investigating the effect of horizontal coopetition on supply chain resilience in complex and turbulent environments," International Journal of Production Economics, Elsevier, vol. 237(C).
    11. Tian Yang & Changhao Liu & Raymond P. Côté & Jinwen Ye & Weifeng Liu, 2022. "Evaluating the Barriers to Industrial Symbiosis Using a Group AHP-TOPSIS Model," Sustainability, MDPI, vol. 14(11), pages 1-30, June.
    12. Ilaria Giannoccaro & Valeria Zaza & Luca Fraccascia, 2023. "Designing regional industrial symbiosis networks: The case of Apulia region," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1475-1514, June.
    13. Fraccascia, Luca & Albino, Vito & Garavelli, Claudio A., 2017. "Technical efficiency measures of industrial symbiosis networks using enterprise input-output analysis," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 273-286.
    14. Dong, Liang & Liang, Hanwei & Zhang, Liguo & Liu, Zhaowen & Gao, Zhiqiu & Hu, Mingming, 2017. "Highlighting regional eco-industrial development: Life cycle benefits of an urban industrial symbiosis and implications in China," Ecological Modelling, Elsevier, vol. 361(C), pages 164-176.
    15. John Rincón-Moreno & Marta Ormazabal & Maria J. Álvarez & Carmen Jaca, 2020. "Shortcomings of Transforming a Local Circular Economy System through Industrial Symbiosis: A Case Study in Spanish SMEs," Sustainability, MDPI, vol. 12(20), pages 1-18, October.
    16. Rachelle LeBlanc & Carole Tranchant & Yves Gagnon & Raymond Côté, 2016. "Potential for Eco-Industrial Park Development in Moncton, New Brunswick (Canada): A Comparative Analysis," Sustainability, MDPI, vol. 8(5), pages 1-18, May.
    17. Miguel A. Artacho-Ramírez & Bélgica Pacheco-Blanco & Víctor A. Cloquell-Ballester & Mónica Vicent & Irina Celades, 2020. "Quick Wins Workshop and Companies Profiling to Analyze Industrial Symbiosis Potential. Valenciaport’s Cluster as Case Study," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    18. Aid, Graham & Eklund, Mats & Anderberg, Stefan & Baas, Leenard, 2017. "Expanding roles for the Swedish waste management sector in inter-organizational resource management," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 85-97.
    19. Liu, Changhao & Zhang, Kai, 2013. "Industrial ecology and water utilization of the marine chemical industry: A case study of Hai Hua Group (HHG), China," Resources, Conservation & Recycling, Elsevier, vol. 70(C), pages 78-85.
    20. Sara Tessitore & Tiberio Daddi & Fabio Iraldo, 2015. "Eco-Industrial Parks Development and Integrated Management Challenges: Findings from Italy," Sustainability, MDPI, vol. 7(8), pages 1-16, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:4:p:521-:d:94536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.