IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v127y2022i5d10.1007_s11192-022-04289-7.html
   My bibliography  Save this article

Search where you will find most: Comparing the disciplinary coverage of 56 bibliographic databases

Author

Listed:
  • Michael Gusenbauer

    (University of Innsbruck)

Abstract

This paper introduces a novel scientometrics method and applies it to estimate the subject coverages of many of the popular English-focused bibliographic databases in academia. The method uses query results as a common denominator to compare a wide variety of search engines, repositories, digital libraries, and other bibliographic databases. The method extends existing sampling-based approaches that analyze smaller sets of database coverages. The findings show the relative and absolute subject coverages of 56 databases—information that has often not been available before. Knowing the databases’ absolute subject coverage allows the selection of the most comprehensive databases for searches requiring high recall/sensitivity, particularly relevant in lookup or exploratory searches. Knowing the databases’ relative subject coverage allows the selection of specialized databases for searches requiring high precision/specificity, particularly relevant in systematic searches. The findings illustrate not only differences in the disciplinary coverage of Google Scholar, Scopus, or Web of Science, but also of less frequently analyzed databases. For example, researchers might be surprised how Meta (discontinued), Embase, or Europe PMC are found to cover more records than PubMed in Medicine and other health subjects. These findings should encourage researchers to re-evaluate their go-to databases, also against newly introduced options. Searching with more comprehensive databases can improve finding, particularly when selecting the most fitting databases needs particular thought, such as in systematic reviews and meta-analyses. This comparison can also help librarians and other information experts re-evaluate expensive database procurement strategies. Researchers without institutional access learn which open databases are likely most comprehensive in their disciplines.

Suggested Citation

  • Michael Gusenbauer, 2022. "Search where you will find most: Comparing the disciplinary coverage of 56 bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2683-2745, May.
  • Handle: RePEc:spr:scient:v:127:y:2022:i:5:d:10.1007_s11192-022-04289-7
    DOI: 10.1007/s11192-022-04289-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-022-04289-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-022-04289-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elizabeth S. Vieira & José A. N. F. Gomes, 2009. "A comparison of Scopus and Web of Science for a typical university," Scientometrics, Springer;Akadémiai Kiadó, vol. 81(2), pages 587-600, November.
    2. Raminta Pranckutė, 2021. "Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World," Publications, MDPI, vol. 9(1), pages 1-59, March.
    3. Wang, Qi & Waltman, Ludo, 2016. "Large-scale analysis of the accuracy of the journal classification systems of Web of Science and Scopus," Journal of Informetrics, Elsevier, vol. 10(2), pages 347-364.
    4. Christian Herzog & Brian Kierkegaard Lunn, 2018. "Response to the letter ‘Field classification of publications in Dimensions: a first case study testing its reliability and validity’," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 641-645, October.
    5. Miguel-Angel Vera-Baceta & Michael Thelwall & Kayvan Kousha, 2019. "Web of Science and Scopus language coverage," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1803-1813, December.
    6. Vivek Kumar Singh & Prashasti Singh & Mousumi Karmakar & Jacqueline Leta & Philipp Mayr, 2021. "The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 5113-5142, June.
    7. Ludo Waltman & Nees Jan Eck, 2012. "A new methodology for constructing a publication-level classification system of science," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    8. Michael F. Bryan & Stephen G. Cecchetti, 1993. "The consumer price index as a measure of inflation," Economic Review, Federal Reserve Bank of Cleveland, vol. 29(Q IV), pages 15-24.
    9. Anne-Wil Harzing & Satu Alakangas, 2016. "Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 787-804, February.
    10. Philippe Mongeon & Adèle Paul-Hus, 2016. "The journal coverage of Web of Science and Scopus: a comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 213-228, January.
    11. Michael Gusenbauer, 2019. "Google Scholar to overshadow them all? Comparing the sizes of 12 academic search engines and bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 177-214, January.
    12. Moed, Henk F. & Bar-Ilan, Judit & Halevi, Gali, 2016. "A new methodology for comparing Google Scholar and Scopus," Journal of Informetrics, Elsevier, vol. 10(2), pages 533-551.
    13. Aghaei Chadegani, Arezoo & Salehi, Hadi & Md Yunus, Melor & Farhadi, Hadi & Fooladi, Masood & Farhadi, Maryam & Ale Ebrahim, Nader, 2013. "A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases," MPRA Paper 46898, University Library of Munich, Germany, revised 18 Mar 2013.
    14. Kayvan Kousha & Mike Thelwall, 2008. "Sources of Google Scholar citations outside the Science Citation Index: A comparison between four science disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 74(2), pages 273-294, February.
    15. Anne-Wil Harzing, 2019. "Two new kids on the block: How do Crossref and Dimensions compare with Google Scholar, Microsoft Academic, Scopus and the Web of Science?," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 341-349, July.
    16. Martín-Martín, Alberto & Orduna-Malea, Enrique & Thelwall, Mike & Delgado López-Cózar, Emilio, 2018. "Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories," Journal of Informetrics, Elsevier, vol. 12(4), pages 1160-1177.
    17. Alberto Martín-Martín & Mike Thelwall & Enrique Orduna-Malea & Emilio Delgado López-Cózar, 2021. "Correction to: Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: a multidisciplinary comparison of coverage via citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 907-908, January.
    18. Ludo Waltman & Nees Jan van Eck, 2012. "A new methodology for constructing a publication‐level classification system of science," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 63(12), pages 2378-2392, December.
    19. Lokman I. Meho & Kiduk Yang, 2007. "Impact of data sources on citation counts and rankings of LIS faculty: Web of science versus scopus and google scholar," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(13), pages 2105-2125, November.
    20. Sven E. Hug & Martin P. Brändle, 2017. "The coverage of Microsoft Academic: analyzing the publication output of a university," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1551-1571, December.
    21. Shu, Fei & Julien, Charles-Antoine & Zhang, Lin & Qiu, Junping & Zhang, Jing & Larivière, Vincent, 2019. "Comparing journal and paper level classifications of science," Journal of Informetrics, Elsevier, vol. 13(1), pages 202-225.
    22. Lutz Bornmann, 2018. "Field classification of publications in Dimensions: a first case study testing its reliability and validity," Scientometrics, Springer;Akadémiai Kiadó, vol. 117(1), pages 637-640, October.
    23. Perianes-Rodriguez, Antonio & Waltman, Ludo & van Eck, Nees Jan, 2016. "Constructing bibliometric networks: A comparison between full and fractional counting," Journal of Informetrics, Elsevier, vol. 10(4), pages 1178-1195.
    24. Alberto Martín-Martín & Enrique Orduna-Malea & Emilio Delgado López-Cózar, 2018. "Coverage of highly-cited documents in Google Scholar, Web of Science, and Scopus: a multidisciplinary comparison," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 2175-2188, September.
    25. Franceschini, Fiorenzo & Maisano, Domenico & Mastrogiacomo, Luca, 2016. "Empirical analysis and classification of database errors in Scopus and Web of Science," Journal of Informetrics, Elsevier, vol. 10(4), pages 933-953.
    26. Alberto Martín-Martín & Mike Thelwall & Enrique Orduna-Malea & Emilio Delgado López-Cózar, 2021. "Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: a multidisciplinary comparison of coverage via citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 871-906, January.
    27. Félix Moya-Anegón & Zaida Chinchilla-Rodríguez & Benjamín Vargas-Quesada & Elena Corera-Álvarez & Francisco José Muñoz-Fernández & Antonio González-Molina & Victor Herrero-Solana, 2007. "Coverage analysis of Scopus: A journal metric approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 73(1), pages 53-78, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maria Armaou & Matthew Pears & Stathis Th. Konstantinidis & Holly Blake, 2024. "Evolution of Primary Research Studies in Digital Interventions for Mental Well-Being Promotion from 2004 to 2023: A Bibliometric Analysis of Studies on the Web of Science," IJERPH, MDPI, vol. 21(3), pages 1-28, March.
    2. Vicenç Hernández-González & Josep Maria Carné-Torrent & Carme Jové-Deltell & Álvaro Pano-Rodríguez & Joaquin Reverter-Masia, 2022. "The Top 100 Most Cited Scientific Papers in the Public, Environmental & Occupational Health Category of Web of Science: A Bibliometric and Visualized Analysis," IJERPH, MDPI, vol. 19(15), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raminta Pranckutė, 2021. "Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World," Publications, MDPI, vol. 9(1), pages 1-59, March.
    2. Shir Aviv-Reuven & Ariel Rosenfeld, 2023. "A logical set theory approach to journal subject classification analysis: intra-system irregularities and inter-system discrepancies in Web of Science and Scopus," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 157-175, January.
    3. Vivek Kumar Singh & Prashasti Singh & Mousumi Karmakar & Jacqueline Leta & Philipp Mayr, 2021. "The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 5113-5142, June.
    4. Gerson Pech & Catarina Delgado, 2020. "Percentile and stochastic-based approach to the comparison of the number of citations of articles indexed in different bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 223-252, April.
    5. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    6. Steve J. Bickley & Ho Fai Chan & Benno Torgler, 2022. "Artificial intelligence in the field of economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(4), pages 2055-2084, April.
    7. Martín-Martín, Alberto & Orduna-Malea, Enrique & Thelwall, Mike & Delgado López-Cózar, Emilio, 2018. "Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories," Journal of Informetrics, Elsevier, vol. 12(4), pages 1160-1177.
    8. Gerson Pech & Catarina Delgado, 2020. "Assessing the publication impact using citation data from both Scopus and WoS databases: an approach validated in 15 research fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 909-924, November.
    9. Adriana Ana Maria Davidescu & Margareta-Stela Florescu & Liviu Cosmin Mosora & Mihaela Hrisanta Mosora & Eduard Mihai Manta, 2022. "A Bibliometric Analysis of Research Publications of the Bucharest University of Economic Studies in Time of Pandemics: Implications for Teachers’ Professional Publishing Activity," IJERPH, MDPI, vol. 19(14), pages 1-36, July.
    10. Fernando Morante-Carballo & Néstor Montalván-Burbano & Maribel Aguilar-Aguilar & Paúl Carrión-Mero, 2022. "A Bibliometric Analysis of the Scientific Research on Artisanal and Small-Scale Mining," IJERPH, MDPI, vol. 19(13), pages 1-29, July.
    11. Zhentao Liang & Jin Mao & Kun Lu & Gang Li, 2021. "Finding citations for PubMed: a large-scale comparison between five freely available bibliographic data sources," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9519-9542, December.
    12. Parul Khurana & Kiran Sharma, 2022. "Impact of h-index on author’s rankings: an improvement to the h-index for lower-ranked authors," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(8), pages 4483-4498, August.
    13. Paúl Carrión-Mero & Néstor Montalván-Burbano & Fernando Morante-Carballo & Adolfo Quesada-Román & Boris Apolo-Masache, 2021. "Worldwide Research Trends in Landslide Science," IJERPH, MDPI, vol. 18(18), pages 1-24, September.
    14. Elena Andriollo & Alberto Caimo & Laura Secco & Elena Pisani, 2021. "Collaborations in Environmental Initiatives for an Effective “Adaptive Governance” of Social–Ecological Systems: What Existing Literature Suggests," Sustainability, MDPI, vol. 13(15), pages 1-29, July.
    15. Gerson Pech & Catarina Delgado & Silvio Paolo Sorella, 2022. "Classifying papers into subfields using Abstracts, Titles, Keywords and KeyWords Plus through pattern detection and optimization procedures: An application in Physics," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(11), pages 1513-1528, November.
    16. Michael Gusenbauer, 2019. "Google Scholar to overshadow them all? Comparing the sizes of 12 academic search engines and bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 177-214, January.
    17. Toluwase Victor Asubiaro & Sodiq Onaolapo, 2023. "A comparative study of the coverage of African journals in Web of Science, Scopus, and CrossRef," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(7), pages 745-758, July.
    18. Luisa F. Cabeza & Marta Chàfer & Érika Mata, 2020. "Comparative Analysis of Web of Science and Scopus on the Energy Efficiency and Climate Impact of Buildings," Energies, MDPI, vol. 13(2), pages 1-24, January.
    19. Franceschini, Fiorenzo & Maisano, Domenico & Mastrogiacomo, Luca, 2016. "Empirical analysis and classification of database errors in Scopus and Web of Science," Journal of Informetrics, Elsevier, vol. 10(4), pages 933-953.
    20. Alberto Martín-Martín & Mike Thelwall & Enrique Orduna-Malea & Emilio Delgado López-Cózar, 2021. "Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of Science, and OpenCitations’ COCI: a multidisciplinary comparison of coverage via citations," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(1), pages 871-906, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:127:y:2022:i:5:d:10.1007_s11192-022-04289-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.