IDEAS home Printed from https://ideas.repec.org/a/eee/infome/v12y2018i4p1160-1177.html
   My bibliography  Save this article

Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories

Author

Listed:
  • Martín-Martín, Alberto
  • Orduna-Malea, Enrique
  • Thelwall, Mike
  • Delgado López-Cózar, Emilio

Abstract

Despite citation counts from Google Scholar (GS), Web of Science (WoS), and Scopus being widely consulted by researchers and sometimes used in research evaluations, there is no recent or systematic evidence about the differences between them. In response, this paper investigates 2,448,055 citations to 2299 English-language highly-cited documents from 252 GS subject categories published in 2006, comparing GS, the WoS Core Collection, and Scopus. GS consistently found the largest percentage of citations across all areas (93%–96%), far ahead of Scopus (35%–77%) and WoS (27%–73%). GS found nearly all the WoS (95%) and Scopus (92%) citations. Most citations found only by GS were from non-journal sources (48%–65%), including theses, books, conference papers, and unpublished materials. Many were non-English (19%–38%), and they tended to be much less cited than citing sources that were also in Scopus or WoS. Despite the many unique GS citing sources, Spearman correlations between citation counts in GS and WoS or Scopus are high (0.78-0.99). They are lower in the Humanities, and lower between GS and WoS than between GS and Scopus. The results suggest that in all areas GS citation data is essentially a superset of WoS and Scopus, with substantial extra coverage.

Suggested Citation

  • Martín-Martín, Alberto & Orduna-Malea, Enrique & Thelwall, Mike & Delgado López-Cózar, Emilio, 2018. "Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories," Journal of Informetrics, Elsevier, vol. 12(4), pages 1160-1177.
  • Handle: RePEc:eee:infome:v:12:y:2018:i:4:p:1160-1177
    DOI: 10.1016/j.joi.2018.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1751157718303249
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.joi.2018.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nabil Amara & Réjean Landry, 2012. "Counting citations in the field of business and management: why use Google Scholar rather than the Web of Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 553-581, December.
    2. Judit Bar-Ilan, 2010. "Citations to the “Introduction to informetrics” indexed by WOS, Scopus and Google Scholar," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(3), pages 495-506, March.
    3. Diego Chavarro & Ismael Ràfols & Puay Tang, 2018. "To what extent is inclusion in the Web of Science an indicator of journal ‘quality’?," Research Evaluation, Oxford University Press, vol. 27(2), pages 106-118.
    4. Anne-Wil Harzing & Satu Alakangas, 2016. "Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 787-804, February.
    5. Halevi, Gali & Moed, Henk & Bar-Ilan, Judit, 2017. "Suitability of Google Scholar as a source of scientific information and as a source of data for scientific evaluation—Review of the Literature," Journal of Informetrics, Elsevier, vol. 11(3), pages 823-834.
    6. Joost C. F. Winter & Amir A. Zadpoor & Dimitra Dodou, 2014. "The expansion of Google Scholar versus Web of Science: a longitudinal study," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1547-1565, February.
    7. Philippe Mongeon & Adèle Paul-Hus, 2016. "The journal coverage of Web of Science and Scopus: a comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(1), pages 213-228, January.
    8. Pardeep Sud & Mike Thelwall, 2014. "Evaluating altmetrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1131-1143, February.
    9. Moed, Henk F. & Bar-Ilan, Judit & Halevi, Gali, 2016. "A new methodology for comparing Google Scholar and Scopus," Journal of Informetrics, Elsevier, vol. 10(2), pages 533-551.
    10. Enrique Orduna-Malea & Juan M. Ayllón & Alberto Martín-Martín & Emilio Delgado López-Cózar, 2015. "Methods for estimating the size of Google Scholar," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 931-949, September.
    11. Kayvan Kousha & Mike Thelwall, 2008. "Sources of Google Scholar citations outside the Science Citation Index: A comparison between four science disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 74(2), pages 273-294, February.
    12. Emilio Delgado López-Cózar & Nicolás Robinson-García & Daniel Torres-Salinas, 2014. "The Google scholar experiment: How to index false papers and manipulate bibliometric indicators," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(3), pages 446-454, March.
    13. John Mingers & Evangelia A. E. C. G. Lipitakis, 2010. "Counting the citations: a comparison of Web of Science and Google Scholar in the field of business and management," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(2), pages 613-625, November.
    14. Lokman I. Meho & Kiduk Yang, 2007. "Impact of data sources on citation counts and rankings of LIS faculty: Web of science versus scopus and google scholar," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(13), pages 2105-2125, November.
    15. Ad A.M. Prins & Rodrigo Costas & Thed N. van Leeuwen & Paul F. Wouters, 2016. "Using Google Scholar in research evaluation of humanities and social science programs: A comparison with Web of Science data," Research Evaluation, Oxford University Press, vol. 25(3), pages 264-270.
    16. Kayvan Kousha & Mike Thelwall, 2007. "Google Scholar citations and Google Web/URL citations: A multi‐discipline exploratory analysis," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(7), pages 1055-1065, May.
    17. Alberto Martín-Martín & Enrique Orduna-Malea & Emilio Delgado López-Cózar, 2018. "Coverage of highly-cited documents in Google Scholar, Web of Science, and Scopus: a multidisciplinary comparison," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 2175-2188, September.
    18. Thed N. Van Leeuwen & Henk F. Moed & Robert J. W. Tijssen & Martijn S. Visser & Anthony F. J. Van Raan, 2001. "Language biases in the coverage of the Science Citation Index and its consequencesfor international comparisons of national research performance," Scientometrics, Springer;Akadémiai Kiadó, vol. 51(1), pages 335-346, April.
    19. Derek De Solla Price, 1976. "A general theory of bibliometric and other cumulative advantage processes," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 27(5), pages 292-306, September.
    20. Lorna Wildgaard, 2015. "A comparison of 17 author-level bibliometric indicators for researchers in Astronomy, Environmental Science, Philosophy and Public Health in Web of Science and Google Scholar," Scientometrics, Springer;Akadémiai Kiadó, vol. 104(3), pages 873-906, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberto Martín-Martín & Enrique Orduna-Malea & Emilio Delgado López-Cózar, 2018. "Coverage of highly-cited documents in Google Scholar, Web of Science, and Scopus: a multidisciplinary comparison," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 2175-2188, September.
    2. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    3. Halevi, Gali & Moed, Henk & Bar-Ilan, Judit, 2017. "Suitability of Google Scholar as a source of scientific information and as a source of data for scientific evaluation—Review of the Literature," Journal of Informetrics, Elsevier, vol. 11(3), pages 823-834.
    4. Maor Weinberger & Maayan Zhitomirsky-Geffet, 2021. "Diversity of success: measuring the scholarly performance diversity of tenured professors in the Israeli academia," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2931-2970, April.
    5. Moed, Henk F. & Bar-Ilan, Judit & Halevi, Gali, 2016. "A new methodology for comparing Google Scholar and Scopus," Journal of Informetrics, Elsevier, vol. 10(2), pages 533-551.
    6. Sergio Copiello, 2019. "The open access citation premium may depend on the openness and inclusiveness of the indexing database, but the relationship is controversial because it is ambiguous where the open access boundary lie," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 995-1018, November.
    7. Michael Gusenbauer, 2022. "Search where you will find most: Comparing the disciplinary coverage of 56 bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2683-2745, May.
    8. Franceschini, Fiorenzo & Maisano, Domenico & Mastrogiacomo, Luca, 2016. "Empirical analysis and classification of database errors in Scopus and Web of Science," Journal of Informetrics, Elsevier, vol. 10(4), pages 933-953.
    9. Vivek Kumar Singh & Prashasti Singh & Mousumi Karmakar & Jacqueline Leta & Philipp Mayr, 2021. "The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 5113-5142, June.
    10. Martin-Martin, Alberto & Orduna-Malea, Enrique & Harzing, Anne-Wil & Delgado López-Cózar, Emilio, 2017. "Can we use Google Scholar to identify highly-cited documents?," Journal of Informetrics, Elsevier, vol. 11(1), pages 152-163.
    11. Thelwall, Mike, 2018. "Microsoft Academic automatic document searches: Accuracy for journal articles and suitability for citation analysis," Journal of Informetrics, Elsevier, vol. 12(1), pages 1-9.
    12. Joost C. F. Winter & Amir A. Zadpoor & Dimitra Dodou, 2014. "The expansion of Google Scholar versus Web of Science: a longitudinal study," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1547-1565, February.
    13. Raminta Pranckutė, 2021. "Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World," Publications, MDPI, vol. 9(1), pages 1-59, March.
    14. Michael Gusenbauer, 2019. "Google Scholar to overshadow them all? Comparing the sizes of 12 academic search engines and bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 177-214, January.
    15. John Mingers & Martin Meyer, 2017. "Normalizing Google Scholar data for use in research evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(2), pages 1111-1121, August.
    16. Anne-Wil Harzing & Satu Alakangas, 2016. "Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 787-804, February.
    17. Thelwall, Mike, 2018. "Dimensions: A competitor to Scopus and the Web of Science?," Journal of Informetrics, Elsevier, vol. 12(2), pages 430-435.
    18. Alberto Martín-Martín & Enrique Orduna-Malea & Emilio Delgado López-Cózar, 2018. "A novel method for depicting academic disciplines through Google Scholar Citations: The case of Bibliometrics," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1251-1273, March.
    19. Gerson Pech & Catarina Delgado, 2020. "Percentile and stochastic-based approach to the comparison of the number of citations of articles indexed in different bibliographic databases," Scientometrics, Springer;Akadémiai Kiadó, vol. 123(1), pages 223-252, April.
    20. Mike Thelwall & Kayvan Kousha, 2017. "ResearchGate versus Google Scholar: Which finds more early citations?," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(2), pages 1125-1131, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:infome:v:12:y:2018:i:4:p:1160-1177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/joi .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.