IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v98y2014i2d10.1007_s11192-013-1089-2.html
   My bibliography  Save this article

The expansion of Google Scholar versus Web of Science: a longitudinal study

Author

Listed:
  • Joost C. F. Winter

    (Delft University of Technology)

  • Amir A. Zadpoor

    (Delft University of Technology)

  • Dimitra Dodou

    (Delft University of Technology)

Abstract

Web of Science (WoS) and Google Scholar (GS) are prominent citation services with distinct indexing mechanisms. Comprehensive knowledge about the growth patterns of these two citation services is lacking. We analyzed the development of citation counts in WoS and GS for two classic articles and 56 articles from diverse research fields, making a distinction between retroactive growth (i.e., the relative difference between citation counts up to mid-2005 measured in mid-2005 and citation counts up to mid-2005 measured in April 2013) and actual growth (i.e., the relative difference between citation counts up to mid-2005 measured in April 2013 and citation counts up to April 2013 measured in April 2013). One of the classic articles was used for a citation-by-citation analysis. Results showed that GS has substantially grown in a retroactive manner (median of 170 % across articles), especially for articles that initially had low citations counts in GS as compared to WoS. Retroactive growth of WoS was small, with a median of 2 % across articles. Actual growth percentages were moderately higher for GS than for WoS (medians of 54 vs. 41 %). The citation-by-citation analysis showed that the percentage of citations being unique in WoS was lower for more recent citations (6.8 % for citations from 1995 and later vs. 41 % for citations from before 1995), whereas the opposite was noted for GS (57 vs. 33 %). It is concluded that, since its inception, GS has shown substantial expansion, and that the majority of recent works indexed in WoS are now also retrievable via GS. A discussion is provided on quantity versus quality of citations, threats for WoS, weaknesses of GS, and implications for literature research and research evaluation.

Suggested Citation

  • Joost C. F. Winter & Amir A. Zadpoor & Dimitra Dodou, 2014. "The expansion of Google Scholar versus Web of Science: a longitudinal study," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(2), pages 1547-1565, February.
  • Handle: RePEc:spr:scient:v:98:y:2014:i:2:d:10.1007_s11192-013-1089-2
    DOI: 10.1007/s11192-013-1089-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-013-1089-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-013-1089-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nabil Amara & Réjean Landry, 2012. "Counting citations in the field of business and management: why use Google Scholar rather than the Web of Science," Scientometrics, Springer;Akadémiai Kiadó, vol. 93(3), pages 553-581, December.
    2. Judit Bar-Ilan, 2010. "Citations to the “Introduction to informetrics” indexed by WOS, Scopus and Google Scholar," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(3), pages 495-506, March.
    3. Susanne Mikki, 2010. "Comparing Google Scholar and ISI Web of Science for Earth Sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 321-331, February.
    4. Anne-Wil Harzing, 2013. "A preliminary test of Google Scholar as a source for citation data: a longitudinal study of Nobel prize winners," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1057-1075, March.
    5. Massimo Franceschet, 2010. "A comparison of bibliometric indicators for computer science scholars and journals on Web of Science and Google Scholar," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(1), pages 243-258, April.
    6. Kayvan Kousha & Mike Thelwall, 2008. "Sources of Google Scholar citations outside the Science Citation Index: A comparison between four science disciplines," Scientometrics, Springer;Akadémiai Kiadó, vol. 74(2), pages 273-294, February.
    7. Bornmann, Lutz & Marx, Werner & Schier, Hermann & Rahm, Erhard & Thor, Andreas & Daniel, Hans-Dieter, 2009. "Convergent validity of bibliometric Google Scholar data in the field of chemistry—Citation counts for papers that were accepted by Angewandte Chemie International Edition or rejected but published els," Journal of Informetrics, Elsevier, vol. 3(1), pages 27-35.
    8. John Mingers & Evangelia A. E. C. G. Lipitakis, 2010. "Counting the citations: a comparison of Web of Science and Google Scholar in the field of business and management," Scientometrics, Springer;Akadémiai Kiadó, vol. 85(2), pages 613-625, November.
    9. Lokman I. Meho & Kiduk Yang, 2007. "Impact of data sources on citation counts and rankings of LIS faculty: Web of science versus scopus and google scholar," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(13), pages 2105-2125, November.
    10. Linda Butler & Martijn S. Visser, 2006. "Extending citation analysis to non-source items," Scientometrics, Springer;Akadémiai Kiadó, vol. 66(2), pages 327-343, February.
    11. Bar-Ilan, Judit & Levene, Mark & Lin, Ayelet, 2007. "Some measures for comparing citation databases," Journal of Informetrics, Elsevier, vol. 1(1), pages 26-34.
    12. Sen, Amartya K, 1974. "On Some Debates in Capital Theory," Economica, London School of Economics and Political Science, vol. 41(163), pages 328-335, August.
    13. Peder Olesen Larsen & Markus Ins, 2010. "The rate of growth in scientific publication and the decline in coverage provided by Science Citation Index," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(3), pages 575-603, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Waltman, Ludo, 2016. "A review of the literature on citation impact indicators," Journal of Informetrics, Elsevier, vol. 10(2), pages 365-391.
    2. Halevi, Gali & Moed, Henk & Bar-Ilan, Judit, 2017. "Suitability of Google Scholar as a source of scientific information and as a source of data for scientific evaluation—Review of the Literature," Journal of Informetrics, Elsevier, vol. 11(3), pages 823-834.
    3. Martin-Martin, Alberto & Orduna-Malea, Enrique & Harzing, Anne-Wil & Delgado López-Cózar, Emilio, 2017. "Can we use Google Scholar to identify highly-cited documents?," Journal of Informetrics, Elsevier, vol. 11(1), pages 152-163.
    4. Alberto Martín-Martín & Enrique Orduna-Malea & Emilio Delgado López-Cózar, 2018. "Coverage of highly-cited documents in Google Scholar, Web of Science, and Scopus: a multidisciplinary comparison," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(3), pages 2175-2188, September.
    5. Anne-Wil Harzing & Satu Alakangas, 2016. "Google Scholar, Scopus and the Web of Science: a longitudinal and cross-disciplinary comparison," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 787-804, February.
    6. Anne-Wil Harzing, 2013. "A preliminary test of Google Scholar as a source for citation data: a longitudinal study of Nobel prize winners," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1057-1075, March.
    7. Martín-Martín, Alberto & Orduna-Malea, Enrique & Thelwall, Mike & Delgado López-Cózar, Emilio, 2018. "Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories," Journal of Informetrics, Elsevier, vol. 12(4), pages 1160-1177.
    8. Maor Weinberger & Maayan Zhitomirsky-Geffet, 2021. "Diversity of success: measuring the scholarly performance diversity of tenured professors in the Israeli academia," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2931-2970, April.
    9. Moed, Henk F. & Bar-Ilan, Judit & Halevi, Gali, 2016. "A new methodology for comparing Google Scholar and Scopus," Journal of Informetrics, Elsevier, vol. 10(2), pages 533-551.
    10. Mehdi Rhaiem & Nabil Amara, 2020. "Determinants of research efficiency in Canadian business schools: evidence from scholar-level data," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 53-99, October.
    11. Isidro F. Aguillo, 2012. "Is Google Scholar useful for bibliometrics? A webometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 91(2), pages 343-351, May.
    12. Mingers, John & Yang, Liying, 2017. "Evaluating journal quality: A review of journal citation indicators and ranking in business and management," European Journal of Operational Research, Elsevier, vol. 257(1), pages 323-337.
    13. Antonio Cavacini, 2015. "What is the best database for computer science journal articles?," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(3), pages 2059-2071, March.
    14. Mingers, John & Leydesdorff, Loet, 2015. "A review of theory and practice in scientometrics," European Journal of Operational Research, Elsevier, vol. 246(1), pages 1-19.
    15. Massimo Franceschet, 2010. "A comparison of bibliometric indicators for computer science scholars and journals on Web of Science and Google Scholar," Scientometrics, Springer;Akadémiai Kiadó, vol. 83(1), pages 243-258, April.
    16. John Mingers & Martin Meyer, 2017. "Normalizing Google Scholar data for use in research evaluation," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(2), pages 1111-1121, August.
    17. Danielle H. Lee, 2019. "Predictive power of conference-related factors on citation rates of conference papers," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(1), pages 281-304, January.
    18. Marian R. Chertow & Koichi S. Kanaoka & Jooyoung Park, 2021. "Tracking the diffusion of industrial symbiosis scholarship using bibliometrics: Comparing across Web of Science, Scopus, and Google Scholar," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 913-931, August.
    19. George Emm Halkos & Nickolaos G. Tzeremes, 2011. "Measuring economic journals’ citation efficiency: a data envelopment analysis approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 88(3), pages 979-1001, September.
    20. Andersen, Jens Peter & Nielsen, Mathias Wullum, 2018. "Google Scholar and Web of Science: Examining gender differences in citation coverage across five scientific disciplines," Journal of Informetrics, Elsevier, vol. 12(3), pages 950-959.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:98:y:2014:i:2:d:10.1007_s11192-013-1089-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.