IDEAS home Printed from https://ideas.repec.org/a/ags/jlaare/168255.html
   My bibliography  Save this article

Wetlands Retention and Optimal Management of Waterfowl Habitat under Climate Change

Author

Listed:
  • Withey, Patrick
  • van Kooten, G. Cornelis

Abstract

We develop a positive mathematical programming model to investigate the impact of climate change on land use in the prairie pothole region of western Canada, with particular focus on wetlands retention. We examine the effect of climate change and biofuel policies that are implemented to mitigate climate change on wetlands retention. Simulation results indicate that a drier climate could decrease wetlands by as much as 38% if the externality benefits of wetlands are considered, but by nearly 80% if they are not. Reductions in wetlands are most pronounced in the south-central areas of the region.

Suggested Citation

  • Withey, Patrick & van Kooten, G. Cornelis, 2014. "Wetlands Retention and Optimal Management of Waterfowl Habitat under Climate Change," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 39(1), pages 1-18, April.
  • Handle: RePEc:ags:jlaare:168255
    DOI: 10.22004/ag.econ.168255
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/168255/files/JARE_Apr2014__1_Withey_pp1-18.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.168255?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marian Weber & Grant Hauer, 2003. "A Regional Analysis of Climate Change Impacts on Canadian Agriculture," Canadian Public Policy, University of Toronto Press, vol. 29(2), pages 163-179, June.
    2. Woodward, Richard T. & Wui, Yong-Suhk, 2001. "The economic value of wetland services: a meta-analysis," Ecological Economics, Elsevier, vol. 37(2), pages 257-270, May.
    3. Brett G. Cortus & Scott R. Jeffrey & James R. Unterschultz & Peter C. Boxall, 2011. "The Economics of Wetland Drainage and Retention in Saskatchewan," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 59(1), pages 109-126, March.
    4. Withey, Patrick & van Kooten, G. Cornelis, 2011. "The effect of climate change on optimal wetlands and waterfowl management in Western Canada," Ecological Economics, Elsevier, vol. 70(4), pages 798-805, February.
    5. Paris,Quirino, 2011. "Economic Foundations of Symmetric Programming," Cambridge Books, Cambridge University Press, number 9780521123020.
    6. Luke Brander & Raymond Florax & Jan Vermaat, 2006. "The Empirics of Wetland Valuation: A Comprehensive Summary and a Meta-Analysis of the Literature," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 33(2), pages 223-250, February.
    7. Heckelei, Thomas & Britz, Wolfgang & Zhang, Yinan, 2012. "Positive Mathematical Programming Approaches – Recent Developments in Literature and Applied Modelling," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(1), pages 1-16, April.
    8. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    9. Brown, Gardner, Jr & Hammack, Judd, 1973. "Dynamic Economic Management of Migratory Waterfowl," The Review of Economics and Statistics, MIT Press, vol. 55(1), pages 73-82, February.
    10. Paris,Quirino, 2011. "Economic Foundations of Symmetric Programming," Cambridge Books, Cambridge University Press, number 9780521194723.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asfaw, Solomon & Cattaneo, Andrea & Pallante, Giacomo & Palma, Alessandro, 2017. "Improving the efficiency targeting of Malawi's farm input subsidy programme: Big pain, small gain?," Food Policy, Elsevier, vol. 73(C), pages 104-118.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. G. Cornelis van Kooten & Patrick Withey & Linda Wong, 2011. "Bioeconomic Modeling of Wetlands and Waterfowl in Western Canada: Accounting for Amenity Values," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 59, pages 167-183, June.
    2. Louhichi, Kamel & Ciaian, Pavel & Espinosa, Maria & Colen, Liesbeth & Perni, Angel & Paloma, Sergio, 2015. "The Impact of Crop Diversification Measure: EU-wide Evidence Based on IFM-CAP Model," 2015 Conference, August 9-14, 2015, Milan, Italy 211542, International Association of Agricultural Economists.
    3. Kooten, G. Cornelis van, 2013. "Modeling Forest Trade in Logs and Lumber: Qualitative and Quantitative Analysis," Working Papers 149182, University of Victoria, Resource Economics and Policy.
    4. Kamel Elouhichi & Maria Espinosa Goded & Pavel Ciaian & Angel Perni Llorente & Bouda Vosough Ahmadi & Liesbeth Colen & Sergio Gomez Y Paloma, 2018. "The EU-Wide Individual Farm Model for Common Agricultural Policy Analysis (IFM-CAP v.1): Economic Impacts of CAP Greening," JRC Research Reports JRC108693, Joint Research Centre.
    5. Liu, Xuan & van Kooten, Gerrit Cornelis & Duan, Jun, 2020. "Calibration of agricultural risk programming models using positive mathematical programming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), July.
    6. Johnston, Craig M.T. & van Kooten, G. Cornelis, 2014. "Modelling Bi-lateral Forest Product Trade Flows: Experiencing Vertical and Horizontal Chain Optimization," Working Papers 197898, University of Victoria, Resource Economics and Policy.
    7. Louhichi, Kamel & Ciaian, Pavel & Espinosa, Maria & Colen, Liesbeth & Perni, Angel & Gomez y Paloma, Sergio, 2015. "EU-wide individual Farm Model for CAP Analysis (IFM-CAP): Application to Crop Diversification Policy," 2015 Conference, August 9-14, 2015, Milan, Italy 212155, International Association of Agricultural Economists.
    8. Kamel Louhichi & Pavel Ciaian & Maria Espinosa & Angel Perni & Sergio Gomez y Paloma, 2018. "Economic impacts of CAP greening: application of an EU-wide individual farm model for CAP analysis (IFM-CAP)," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(2), pages 205-238.
    9. Patrick Withey & G. Cornelis van Kooten, 2011. "The Effect of Climate Change on Wetlands and Waterfowl in Western Canada: Incorporating Cropping Decisions into a Bioeconomic Model," Working Papers 2011-06, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    10. Affuso, Ermanno & Hite, Diane, 2013. "A model for sustainable land use in biofuel production: An application to the state of Alabama," Energy Economics, Elsevier, vol. 37(C), pages 29-39.
    11. Louhichi, Kamel & Gomez y Paloma, Sergio, 2014. "A farm household model for agri-food policy analysis in developing countries: Application to smallholder farmers in Sierra Leone," Food Policy, Elsevier, vol. 45(C), pages 1-13.
    12. van Kooten, G. Cornelis & Johnston, Craig, 2014. "Global impacts of Russian log export restrictions and the Canada–U.S. lumber dispute: Modeling trade in logs and lumber," Forest Policy and Economics, Elsevier, vol. 39(C), pages 54-66.
    13. Pérez-Blanco, C.D. & Gutiérrez-Martín, C., 2017. "Buy me a river: Use of multi-attribute non-linear utility functions to address overcompensation in agricultural water buyback," Agricultural Water Management, Elsevier, vol. 190(C), pages 6-20.
    14. Withey, Patrick & van Kooten, G. Cornelis, 2011. "The effect of climate change on optimal wetlands and waterfowl management in Western Canada," Ecological Economics, Elsevier, vol. 70(4), pages 798-805, February.
    15. Louhichi, Kamel & Ciaian, Pavel & Espinosa, Maria & Colen, Liesbeth & Perni, Angel & Gomez y Paloma, Sergio, 2015. "Farm-level economic impacts of EU-CAP greening measures," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205309, Agricultural and Applied Economics Association.
    16. Birol, Ekin & Karousakis, Katia & Koundouri, Phoebe, 2006. "Using a choice experiment to account for preference heterogeneity in wetland attributes: The case of Cheimaditida wetland in Greece," Ecological Economics, Elsevier, vol. 60(1), pages 145-156, November.
    17. Jette Jacobsen & Nick Hanley, 2009. "Are There Income Effects on Global Willingness to Pay for Biodiversity Conservation?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 43(2), pages 137-160, June.
    18. Birol, Ekin & Koundouri, Phoebe & Kountouris, Yiannis, 2007. "Using the contingent valuation method to inform sustainable wetland management: the case of the Akrotiri wetland in Cyprus," MPRA Paper 38430, University Library of Munich, Germany.
    19. Wong, Linda & van Kooten, G. Cornelis & Clarke, Judith A., 2012. "The Impact of Agriculture on Waterfowl Abundance: Evidence from Panel Data," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 37(2), pages 1-14, August.
    20. Brennan A. McLachlan & G. Cornelis van Kooten, 2022. "Reforming Canada's dairy supply management scheme and the consequences for international trade," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 70(1), pages 21-39, March.

    More about this item

    Keywords

    Environmental Economics and Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:jlaare:168255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/waeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.