IDEAS home Printed from https://ideas.repec.org/r/spr/joecth/v18y2001i1p159-185.html
   My bibliography  Save this item

symposium articles: A differentiable homotopy to compute Nash equilibria of n -person games

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Wheatley, W. Parker, 2003. "Survival And Ownership Of Internet Marketplaces For Agriculture," 2003 Annual meeting, July 27-30, Montreal, Canada 22214, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
  2. Bich, Philippe & Fixary, Julien, 2022. "Network formation and pairwise stability: A new oddness theorem," Journal of Mathematical Economics, Elsevier, vol. 103(C).
  3. Yiyin Cao & Yin Chen & Chuangyin Dang, 2024. "A Variant of the Logistic Quantal Response Equilibrium to Select a Perfect Equilibrium," Journal of Optimization Theory and Applications, Springer, vol. 201(3), pages 1026-1062, June.
  4. Bernhard Stengel, 2010. "Computation of Nash equilibria in finite games: introduction to the symposium," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 1-7, January.
  5. Dang, Chuangyin & Meng, Xiaoxuan & Talman, Dolf, 2015. "An Interior-Point Path-Following Method for Computing a Perfect Stationary Point of a Polynomial Mapping on a Polytope," Other publications TiSEM 07b7a0e7-f814-4ec2-a3a7-e, Tilburg University, School of Economics and Management.
  6. Peixuan Li & Chuangyin Dang & P. Jean-Jacques Herings, 2024. "Computing perfect stationary equilibria in stochastic games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 78(2), pages 347-387, September.
  7. Yiyin Cao & Chuangyin Dang, 2025. "A Characterization of Nash Equilibrium in Behavioral Strategies through Local Sequential Rationality," Papers 2504.00529, arXiv.org, revised Apr 2025.
  8. Yang Zhan & Peixuan Li & Chuangyin Dang, 2020. "A differentiable path-following algorithm for computing perfect stationary points," Computational Optimization and Applications, Springer, vol. 76(2), pages 571-588, June.
  9. Govindan, Srihari & Wilson, Robert, 2004. "Computing Nash equilibria by iterated polymatrix approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1229-1241, April.
  10. Jean-Jacques Herings, P., 2002. "Universally converging adjustment processes--a unifying approach," Journal of Mathematical Economics, Elsevier, vol. 38(3), pages 341-370, November.
  11. P. Herings & Ronald Peeters, 2010. "Homotopy methods to compute equilibria in game theory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 119-156, January.
  12. Herings, P. Jean-Jacques, 2024. "Globally and universally convergent price adjustment processes," Journal of Mathematical Economics, Elsevier, vol. 113(C).
  13. P. Herings & Ronald Peeters, 2005. "A Globally Convergent Algorithm to Compute All Nash Equilibria for n-Person Games," Annals of Operations Research, Springer, vol. 137(1), pages 349-368, July.
  14. Herings, P. Jean-Jacques & Peeters, Ronald J. A. P., 2004. "Stationary equilibria in stochastic games: structure, selection, and computation," Journal of Economic Theory, Elsevier, vol. 118(1), pages 32-60, September.
  15. Cao, Yiyin & Dang, Chuangyin & Xiao, Zhongdong, 2022. "A differentiable path-following method to compute subgame perfect equilibria in stationary strategies in robust stochastic games and its applications," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1032-1050.
  16. Chuangyin Dang & P. Jean-Jacques Herings & Peixuan Li, 2022. "An Interior-Point Differentiable Path-Following Method to Compute Stationary Equilibria in Stochastic Games," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1403-1418, May.
  17. Yuqing Hou & Yiyin Cao & Chuangyin Dang & Yong Wang, 2025. "A sequence-form differentiable path-following method to compute Nash equilibria," Computational Optimization and Applications, Springer, vol. 92(1), pages 265-300, September.
  18. Yiyin Cao & Yin Chen & Chuangyin Dang, 2024. "A Differentiable Path-Following Method with a Compact Formulation to Compute Proper Equilibria," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 377-396, March.
  19. Peixuan Li & Chuangyin Dang, 2020. "An Arbitrary Starting Tracing Procedure for Computing Subgame Perfect Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 667-687, August.
  20. Govindan, Srihari & Wilson, Robert, 2003. "A global Newton method to compute Nash equilibria," Journal of Economic Theory, Elsevier, vol. 110(1), pages 65-86, May.
  21. Bich, Philippe & Fixary, Julien, 2024. "Oddness of the number of Nash equilibria: The case of polynomial payoff functions," Games and Economic Behavior, Elsevier, vol. 145(C), pages 510-525.
  22. Herings, P. Jean-Jacques & Zhan, Yang, 2021. "The computation of pairwise stable networks," Research Memorandum 004, Maastricht University, Graduate School of Business and Economics (GSBE).
  23. Dang, Chuangyin & Herings, P. Jean-Jacques & Li, Peixuan, 2020. "An Interior-Point Path-Following Method to Compute Stationary Equilibria in Stochastic Games," Research Memorandum 001, Maastricht University, Graduate School of Business and Economics (GSBE).
  24. Yiyin Cao & Chuangyin Dang, 2025. "A Characterization of Reny's Weakly Sequentially Rational Equilibrium through $\varepsilon$-Perfect $\gamma$-Weakly Sequentially Rational Equilibrium," Papers 2505.19496, arXiv.org.
  25. Yiyin Cao & Chuangyin Dang & Yabin Sun, 2022. "Complementarity Enhanced Nash’s Mappings and Differentiable Homotopy Methods to Select Perfect Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 533-563, February.
  26. Cao, Yiyin & Dang, Chuangyin, 2022. "A variant of Harsanyi's tracing procedures to select a perfect equilibrium in normal form games," Games and Economic Behavior, Elsevier, vol. 134(C), pages 127-150.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.