IDEAS home Printed from https://ideas.repec.org/r/pre/wpaper/202090.html
   My bibliography  Save this item

Investors' Uncertainty and Forecasting Stock Market Volatility

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Dai, Zhifeng & Zhang, Xiaotong & Li, Tingyu, 2023. "Forecasting stock return volatility in data-rich environment: A new powerful predictor," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
  2. Li, Xiaodan & Gong, Xue & Xing, Lu, 2024. "The impact of presidential economic approval rating on stock volatility: An industrial perspective," Finance Research Letters, Elsevier, vol. 63(C).
  3. Salisu, Afees A. & Gupta, Rangan & Karmakar, Sayar & Das, Sonali, 2022. "Forecasting output growth of advanced economies over eight centuries: The role of gold market volatility as a proxy of global uncertainty," Resources Policy, Elsevier, vol. 75(C).
  4. Madilyn Louisa & Gumgum Darmawan & Bertho Tantular, 2025. "Enhancing Stock Price Forecasting with CNN-BiGRU-Attention: A Case Study on INDY," Mathematics, MDPI, vol. 13(13), pages 1-16, June.
  5. Song, Ziyu & Gong, Xiaomin & Zhang, Cheng & Yu, Changrui, 2023. "Investor sentiment based on scaled PCA method: A powerful predictor of realized volatility in the Chinese stock market," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 528-545.
  6. Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023. "Climate risks and state-level stock market realized volatility," Journal of Financial Markets, Elsevier, vol. 66(C).
  7. Zhikai Zhang & Yaojie Zhang & Yudong Wang & Qunwei Wang, 2024. "The predictability of carbon futures volatility: New evidence from the spillovers of fossil energy futures returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(4), pages 557-584, April.
  8. Guo, Yangli & Ma, Feng & Li, Haibo & Lai, Xiaodong, 2022. "Oil price volatility predictability based on global economic conditions," International Review of Financial Analysis, Elsevier, vol. 82(C).
  9. He, Mengxi & Wang, Yudong & Zeng, Qing & Zhang, Yaojie, 2023. "Forecasting aggregate stock market volatility with industry volatilities: The role of spillover index," Research in International Business and Finance, Elsevier, vol. 65(C).
  10. Yuan, Xianghui & Li, Xiang, 2022. "Delta-hedging demand and intraday momentum: Evidence from China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
  11. Ruipeng Liu & Mawuli Segnon & Rangan Gupta & Elie Bouri, 2021. "Conventional and Unconventional Monetary Policy Rate Uncertainty and Stock Market Volatility: A Forecasting Perspective," Working Papers 202178, University of Pretoria, Department of Economics.
  12. Yu, Xing & Li, Yanyan & Gong, Xue & Zhang, Nan, 2022. "Evaluating the performance of futures hedging using factors-driven realized volatility," International Review of Financial Analysis, Elsevier, vol. 84(C).
  13. Zhang, Zhikai & He, Mengxi & Zhang, Yaojie & Wang, Yudong, 2021. "Realized skewness and the short-term predictability for aggregate stock market volatility," Economic Modelling, Elsevier, vol. 103(C).
  14. Gong, Xue & Zhang, Weiguo & Wang, Junbo & Wang, Chao, 2022. "Investor sentiment and stock volatility: New evidence," International Review of Financial Analysis, Elsevier, vol. 80(C).
  15. Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2024. "Business applications and state‐level stock market realized volatility: A forecasting experiment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 456-472, March.
  16. Afees A. Salisu & Riza Demirer & Rangan Gupta, 2023. "Technological Shocks and Stock Market Volatility Over a Century: A GARCH-MIDAS Approach," Working Papers 202308, University of Pretoria, Department of Economics.
  17. Ghani, Maria & Guo, Qiang & Ma, Feng & Li, Tao, 2022. "Forecasting Pakistan stock market volatility: Evidence from economic variables and the uncertainty index," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 1180-1189.
  18. Juan D. Díaz & Erwin Hansen & Gabriel Cabrera, 2025. "Forecasting the Volatility of US Oil and Gas Firms With Machine Learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(4), pages 1383-1402, July.
  19. Salisu, Afees A. & Demirer, Riza & Gupta, Rangan, 2024. "Technological shocks and stock market volatility over a century," Journal of Empirical Finance, Elsevier, vol. 79(C).
  20. Shi, Qi, 2025. "Technical indicators and aggregate stock returns: An updated look," Journal of Multinational Financial Management, Elsevier, vol. 77(C).
  21. Etaf Alshawarbeh & Alanazi Talal Abdulrahman & Eslam Hussam, 2023. "Statistical Modeling of High Frequency Datasets Using the ARIMA-ANN Hybrid," Mathematics, MDPI, vol. 11(22), pages 1-17, November.
  22. Li, Xiaodan & Gong, Xue & Ge, Futing & Huang, Jingjing, 2024. "Forecasting stock volatility using pseudo-out-of-sample information," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 123-135.
  23. Muhammad Kamran Khan & Jian‐Zhou Teng & Muhammad Imran Khan & Muhammad Fayaz Khan, 2023. "Stock market reaction to macroeconomic variables: An assessment with dynamic autoregressive distributed lag simulations," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(3), pages 2436-2448, July.
  24. Ruipeng Liu & Mawuli Segnon & Oguzhan Cepni & Rangan Gupta, 2023. "Forecasting Volatility of Commodity, Currency, and Stock Markets: Evidence from Markov Switching Multifractal Models," Working Papers 202340, University of Pretoria, Department of Economics.
  25. Danyan Wen & Mengxi He & Yaojie Zhang & Yudong Wang, 2022. "Forecasting realized volatility of Chinese stock market: A simple but efficient truncated approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 230-251, March.
  26. Wang, Zhenxin & Wang, Shaoping & Yan, Yayi & Xia, Yingcun, 2025. "Examining Chinese volume–volatility nexus: A regime-switching perspective," Economic Modelling, Elsevier, vol. 144(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.