IDEAS home Printed from https://ideas.repec.org/r/nat/nature/v415y2002i6871d10.1038_415530a.html
   My bibliography  Save this item

Gene expression profiling predicts clinical outcome of breast cancer

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Chen, Weijie & Yousef, Waleed A. & Gallas, Brandon D. & Hsu, Elizabeth R. & Lababidi, Samir & Tang, Rong & Pennello, Gene A. & Symmans, W. Fraser & Pusztai, Lajos, 2012. "Uncertainty estimation with a finite dataset in the assessment of classification models," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1016-1027.
  2. Zhaoliang Wang & Liugen Xue & Gaorong Li & Fei Lu, 2019. "Spline estimator for ultra-high dimensional partially linear varying coefficient models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 657-677, June.
  3. Ma, Shuangge & Dai, Ying & Huang, Jian & Xie, Yang, 2012. "Identification of breast cancer prognosis markers via integrative analysis," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2718-2728.
  4. Dettling, Marcel & Bühlmann, Peter, 2004. "Finding predictive gene groups from microarray data," Journal of Multivariate Analysis, Elsevier, vol. 90(1), pages 106-131, July.
  5. repec:plo:pcbi00:1002511 is not listed on IDEAS
  6. Haixiang Zhang & Jian Huang & Liuquan Sun, 2022. "Projection‐based and cross‐validated estimation in high‐dimensional Cox model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 353-372, March.
  7. Lingsong Meng & Dorina Avram & George Tseng & Zhiguang Huo, 2022. "Outcome‐guided sparse K‐means for disease subtype discovery via integrating phenotypic data with high‐dimensional transcriptomic data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 352-375, March.
  8. M. R. Guarracino & S. Cuciniello & P. M. Pardalos, 2009. "Classification and Characterization of Gene Expression Data with Generalized Eigenvalues," Journal of Optimization Theory and Applications, Springer, vol. 141(3), pages 533-545, June.
  9. repec:plo:pone00:0156489 is not listed on IDEAS
  10. Guan-Hua Huang & Su-Mei Wang & Chung-Chu Hsu, 2011. "Optimization-Based Model Fitting for Latent Class and Latent Profile Analyses," Psychometrika, Springer;The Psychometric Society, vol. 76(4), pages 584-611, October.
  11. repec:plo:pone00:0009615 is not listed on IDEAS
  12. repec:plo:pone00:0045894 is not listed on IDEAS
  13. repec:plo:pone00:0218592 is not listed on IDEAS
  14. Momin M. Malik, 2020. "A Hierarchy of Limitations in Machine Learning," Papers 2002.05193, arXiv.org, revised Feb 2020.
  15. Tibshirani Robert J., 2009. "Univariate Shrinkage in the Cox Model for High Dimensional Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-20, April.
  16. Koch, Inge & Naito, Kanta, 2010. "Prediction of multivariate responses with a selected number of principal components," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1791-1807, July.
  17. Zhiguang Huo & Ying Ding & Silvia Liu & Steffi Oesterreich & George Tseng, 2016. "Meta-Analytic Framework for Sparse K -Means to Identify Disease Subtypes in Multiple Transcriptomic Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 27-42, March.
  18. Jing Zhang & Qihua Wang & Xuan Wang, 2022. "Surrogate-variable-based model-free feature screening for survival data under the general censoring mechanism," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(2), pages 379-397, April.
  19. Gaynor, Sheila & Bair, Eric, 2017. "Identification of relevant subtypes via preweighted sparse clustering," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 139-154.
  20. Khan Md Hasinur Rahaman & Bhadra Anamika & Howlader Tamanna, 2019. "Stability selection for lasso, ridge and elastic net implemented with AFT models," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(5), pages 1-14, October.
  21. repec:plo:pone00:0005911 is not listed on IDEAS
  22. Gaorong Li & Liugen Xue & Heng Lian, 2012. "SCAD-penalised generalised additive models with non-polynomial dimensionality," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 681-697.
  23. Zhang, Shucong & Zhou, Yong, 2018. "Variable screening for ultrahigh dimensional heterogeneous data via conditional quantile correlations," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 1-13.
  24. Zemin Zheng & Jie Zhang & Yang Li, 2022. "L 0 -Regularized Learning for High-Dimensional Additive Hazards Regression," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2762-2775, September.
  25. Rabea Aschenbruck & Gero Szepannek & Adalbert F. X. Wilhelm, 2023. "Imputation Strategies for Clustering Mixed-Type Data with Missing Values," Journal of Classification, Springer;The Classification Society, vol. 40(1), pages 2-24, April.
  26. repec:plo:pone00:0082144 is not listed on IDEAS
  27. repec:plo:pcbi00:1003851 is not listed on IDEAS
  28. Ahdesmäki Miika & Lancashire Lee & Proutski Vitali & Wilson Claire & Davison Timothy S. & Harkin D. Paul & Kennedy Richard D., 2013. "Model selection for prognostic time-to-event gene signature discovery with applications in early breast cancer data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(5), pages 619-635, October.
  29. Lu, Shuiyun & Chen, Xiaolin & Xu, Sheng & Liu, Chunling, 2020. "Joint model-free feature screening for ultra-high dimensional semi-competing risks data," Computational Statistics & Data Analysis, Elsevier, vol. 147(C).
  30. Zhang, Qiuyan & Wang, Chen & Zhang, Baoxue & Yang, Hu, 2024. "An RIHT statistic for testing the equality of several high-dimensional mean vectors under homoskedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 190(C).
  31. Grace Y. Yi & Wenqing He & Raymond. J. Carroll, 2022. "Feature screening with large‐scale and high‐dimensional survival data," Biometrics, The International Biometric Society, vol. 78(3), pages 894-907, September.
  32. Lian, Heng & Du, Pang & Li, YuanZhang & Liang, Hua, 2014. "Partially linear structure identification in generalized additive models with NP-dimensionality," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 197-208.
  33. repec:plo:pone00:0038650 is not listed on IDEAS
  34. Lian, I.B. & Chang, C.J. & Liang, Y.J. & Yang, M.J. & Fann, C.S.J., 2007. "Identifying differentially expressed genes in dye-swapped microarray experiments of small sample size," Computational Statistics & Data Analysis, Elsevier, vol. 51(5), pages 2602-2620, February.
  35. van Wieringen, Wessel N. & Kun, David & Hampel, Regina & Boulesteix, Anne-Laure, 2009. "Survival prediction using gene expression data: A review and comparison," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1590-1603, March.
  36. Antoniadis, Anestis & Fryzlewicz, Piotr & Letué, Frédérique, 2010. "The Dantzig selector in Cox's proportional hazards model," LSE Research Online Documents on Economics 30992, London School of Economics and Political Science, LSE Library.
  37. Amir Forouzandeh & Alex Rutar & Sunil V Kalmady & Russell Greiner, 2022. "Analyzing biomarker discovery: Estimating the reproducibility of biomarker sets," PLOS ONE, Public Library of Science, vol. 17(7), pages 1-22, July.
  38. repec:plo:pone00:0106444 is not listed on IDEAS
  39. Jan, Budczies & Kosztyla, Daniel & von Törne, Christian & Stenzinger, Albrecht & Darb-Esfahani, Silvia & Dietel, Manfred & Denkert, Carsten, 2014. "cancerclass: An R Package for Development and Validation of Diagnostic Tests from High-Dimensional Molecular Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 59(i01).
  40. Foucher Yohann & Danger Richard, 2012. "Time Dependent ROC Curves for the Estimation of True Prognostic Capacity of Microarray Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(6), pages 1-22, November.
  41. Cambrosio, Alberto & Campbell, Jonah & Keating, Peter & Bourret, Pascale, 2022. "Multi-polar scripts: Techno-regulatory environments and the rise of precision oncology diagnostic tests," Social Science & Medicine, Elsevier, vol. 304(C).
  42. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Feature screening for case‐cohort studies with failure time outcome," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 349-370, March.
  43. Lama, Nicola & Boracchi, Patrizia & Biganzoli, Elia, 2009. "Exploration of distributional models for a novel intensity-dependent normalization procedure in censored gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1906-1922, March.
  44. Cipolli III, William & Hanson, Timothy & McLain, Alexander C., 2016. "Bayesian nonparametric multiple testing," Computational Statistics & Data Analysis, Elsevier, vol. 101(C), pages 64-79.
  45. Wilson Wen Bin Goh & Mohammad Neamul Kabir & Sehwan Yoo & Limsoon Wong, 2024. "Ten quick tips for ensuring machine learning model validity," PLOS Computational Biology, Public Library of Science, vol. 20(9), pages 1-12, September.
  46. Derval, Guillaume & Schaus, Pierre, 2022. "Maximal-Sum submatrix search using a hybrid contraint programming/linear programming approach," European Journal of Operational Research, Elsevier, vol. 297(3), pages 853-865.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.