IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1012402.html
   My bibliography  Save this article

Ten quick tips for ensuring machine learning model validity

Author

Listed:
  • Wilson Wen Bin Goh
  • Mohammad Neamul Kabir
  • Sehwan Yoo
  • Limsoon Wong

Abstract

Author summary: Artificial Intelligence (AI) and Machine Learning (ML) models are increasingly deployed on biomedical and health data to shed insights on biological mechanism, predict disease outcomes, and support clinical decision-making. However, ensuring model validity is challenging. The 10 quick tips described here discuss useful practices on how to check AI/ML models from 2 perspectives—the user and the developer.

Suggested Citation

  • Wilson Wen Bin Goh & Mohammad Neamul Kabir & Sehwan Yoo & Limsoon Wong, 2024. "Ten quick tips for ensuring machine learning model validity," PLOS Computational Biology, Public Library of Science, vol. 20(9), pages 1-12, September.
  • Handle: RePEc:plo:pcbi00:1012402
    DOI: 10.1371/journal.pcbi.1012402
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1012402
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1012402&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1012402?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1012402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.