IDEAS home Printed from https://ideas.repec.org/r/kap/enreec/v44y2009i3p351-377.html
   My bibliography  Save this item

Climate Response Uncertainty and the Benefits of Greenhouse Gas Emissions Reductions

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Robert S. Pindyck, 2013. "Climate Change Policy: What Do the Models Tell Us?," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 860-872, September.
  2. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
  3. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
  4. Ton S. van den Bremer & Frederick van der Ploeg, 2021. "The Risk-Adjusted Carbon Price," American Economic Review, American Economic Association, vol. 111(9), pages 2782-2810, September.
  5. Loïc Berger & Johannes Emmerling & Massimo Tavoni, 2017. "Managing Catastrophic Climate Risks Under Model Uncertainty Aversion," Post-Print hal-03027150, HAL.
  6. Alex L. Marten, 2014. "The Role Of Scenario Uncertainty In Estimating The Benefits Of Carbon Mitigation," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-29.
  7. Robert S. Pindyck, 2011. "Fat Tails, Thin Tails, and Climate Change Policy," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(2), pages 258-274, Summer.
  8. Kelly, David L. & Tan, Zhuo, 2015. "Learning and climate feedbacks: Optimal climate insurance and fat tails," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 98-122.
  9. Robert S. Pindyck, 2013. "The Climate Policy Dilemma," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 219-237, July.
  10. Iverson, Terrence, 2012. "Communicating Trade-offs amid Controversial Science: Decision Support for Climate Policy," Ecological Economics, Elsevier, vol. 77(C), pages 74-90.
  11. Loïc Berger & Johannes Emmerling & Massimo Tavoni, 2017. "Managing Catastrophic Climate Risks Under Model Uncertainty Aversion," Management Science, INFORMS, vol. 63(3), pages 749-765, March.
  12. Joseph E. Aldy & Alan J. Krupnick & Richard G. Newell & Ian W. H. Parry & William A. Pizer, 2010. "Designing Climate Mitigation Policy," Journal of Economic Literature, American Economic Association, vol. 48(4), pages 903-934, December.
  13. Michael Greenstone & Elizabeth Kopits & Ann Wolverton, 2011. "Estimating the Social Cost of Carbon for Use in U.S. Federal Rulemakings: A Summary and Interpretation," NBER Working Papers 16913, National Bureau of Economic Research, Inc.
  14. Golub, Alexander & Lubowski, Ruben & Piris-Cabezas, Pedro, 2017. "Balancing Risks from Climate Policy Uncertainties: The Role of Options and Reduced Emissions from Deforestation and Forest Degradation," Ecological Economics, Elsevier, vol. 138(C), pages 90-98.
  15. Kousky, Carolyn & Kopp, Robert E. & Cooke, Roger M., 2011. "Risk premia and the social cost of carbon: A review," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 5, pages 1-24.
  16. Soheil Shayegh & Valerie Thomas, 2015. "Adaptive stochastic integrated assessment modeling of optimal greenhouse gas emission reductions," Climatic Change, Springer, vol. 128(1), pages 1-15, January.
  17. van der Ploeg, Frederick & ,, 2018. "Pricing Carbon Under Economic and Climactic Risks: Leading-Order Results from Asymptotic Analysis," CEPR Discussion Papers 12642, C.E.P.R. Discussion Papers.
  18. Ackerman, Frank & Stanton, Elizabeth A. & Bueno, Ramón, 2010. "Fat tails, exponents, extreme uncertainty: Simulating catastrophe in DICE," Ecological Economics, Elsevier, vol. 69(8), pages 1657-1665, June.
  19. Williams, Galina & Rolfe, John, 2017. "Willingness to pay for emissions reduction: Application of choice modeling under uncertainty and different management options," Energy Economics, Elsevier, vol. 62(C), pages 302-311.
  20. Antony Millner, 2013. "On Welfare Frameworks and Catastrophic Climate Risks," CESifo Working Paper Series 4442, CESifo.
  21. Marten, Alex L., 2011. "Transient temperature response modeling in IAMs: The effects of over simplification on the SCC," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 5, pages 1-42.
  22. In Hwang & Frédéric Reynès & Richard Tol, 2013. "Climate Policy Under Fat-Tailed Risk: An Application of Dice," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 56(3), pages 415-436, November.
  23. Lin, Boqiang & Zhao, Hengsong, 2023. "Tracking policy uncertainty under climate change," Resources Policy, Elsevier, vol. 83(C).
  24. Gerst, Michael D. & Howarth, Richard B. & Borsuk, Mark E., 2010. "Accounting for the risk of extreme outcomes in an integrated assessment of climate change," Energy Policy, Elsevier, vol. 38(8), pages 4540-4548, August.
  25. Hwang, In Chang & Tol, Richard S.J. & Hofkes, Marjan W., 2016. "Fat-tailed risk about climate change and climate policy," Energy Policy, Elsevier, vol. 89(C), pages 25-35.
  26. In Chang Hwang & Richard S.J. Tol & Marjan W. Hofkes, 2013. "Tail-effect and the Role of Greenhouse Gas Emissions Control," Working Paper Series 6613, Department of Economics, University of Sussex Business School.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.